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a b s t r a c t 

Over the past decade extensive research has examined the segregation of the human brain into large-scale func- 
tional networks. The resulting network maps, i.e. parcellations, are now commonly used for the a priori identifi- 
cation of functional networks. However, the use of these parcellations, particularly in developmental and clinical 
samples, hinges on four fundamental assumptions: (1) the various parcellations are equally able to recover the 
networks of interest; (2) adult-derived parcellations well represent the networks in children’s brains; (3) network 
properties, such as within-network connectivity, are reliably measured across parcellations; and (4) parcellation 
selection does not impact the results with regard to individual differences in given network properties. In the 
present study we examined these assumptions using eight common parcellation schemes in two independent de- 
velopmental samples. We found that the parcellations are equally able to capture networks of interest in both 
children and adults. However, networks bearing the same name across parcellations (e.g., default network) do 
not produce reliable within-network measures of functional connectivity. Critically, parcellation selection signifi- 
cantly impacted the magnitude of associations of functional connectivity with age, poverty, and cognitive ability, 
producing meaningful differences in interpretation of individual differences in functional connectivity based on 
parcellation choice. Our findings suggest that work employing parcellations may benefit from the use of multi- 
ple schemes to confirm the robustness and generalizability of results. Furthermore, researchers looking to gain 
insight into functional networks may benefit from employing more nuanced network identification approaches 
such as using densely-sampled data to produce individual-derived network parcellations. A transition towards 
precision neuroscience will provide new avenues in the characterization of functional brain organization across 
development and within clinical populations. 
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. Introduction 

The human brain is segregated into a series of large-scale func-
ional networks comprised of widely distributed regions. Exploration of
hese functional networks has been conducted using an array of tech-
iques including clustering methods such as Gaussian mixture mod-
ls ( Lashkari et al., 2010 ; Yeo et al., 2011 ), meta-analytic connectiv-
ty methods ( Eickhoff et al., 2011 ; Power et al., 2011 ), edge detection
ethods ( Gordon et al., 2016 ; Laumann et al., 2015 ), multi-modal meth-

ds ( Glasser et al., 2016 ), among many others ( Schaefer et al., 2018 ;
aldassano et al., 2015 ; Blumensath et al., 2013 ; Smith et al., 2009 ). This
ork has given rise to numerous brain parcellation schemes that detail

he specific brain regions that comprise each of the functional networks.
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hough the primary goal of these parcellations is to reveal brain orga-
ization, cognitive, developmental and clinical research has frequently
sed the parcellations as a means of identifying these networks in sub-
ects to examine individual differences in the functional organization of
he brain based on cognition ( Lopez et al., 2019 ; Murphy et al., 2020 ),
ge ( Jalbrzikowski et al., 2019 ; Lopez et al., 2019 ; Satterthwaite et al.,
013 ; Sylvester et al., 2018 ) or the presence of psychopathology
 Fan et al., 2019 ; Lydon-Staley et al., 2019 ; Reggente et al., 2018 ;
u et al., 2019 ). Brain parcellations are used to extract data from a set
f parcels, or brain regions, that comprise the pre-identified functional
etworks. These data are then used to examine network-specific proper-
ies such as within-network connectivity ( Fan et al., 2019 ; Karcher et al.,
019 ; Lydon-Staley et al., 2019 ; Yu et al., 2019 ), or graph theory metrics
uch as global efficiency and modularity ( Bullmore and Sporns, 2009 ;
rayson and Fair, 2017 ; Stumme et al., 2020 ) to draw conclusions about
lobal properties of brain function and individual differences in network
gust 2021 
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Fig. 1. Four major assumptions underlie the 
use of a priori brain parcellations to study in- 
dividual differences in functional brain organi- 
zation in developmental and clinical research. 
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roperties as a function of development or across clinical groups. The
idespread adoption of these parcellations in cognitive neuroscience
roadly ( Geerligs et al., 2015 ; Finc et al., 2020 ; Murphy et al., 2020 ;
eis et al., 2020 ), and specifically within developmental ( Baum et al.,

020 ; Karcher et al., 2019 ; Lopez et al., 2019 ; Tooley et al., 2020 ) and
linical research ( Fair et al., 2013 ; Xia et al., 2018 ; Yerys et al., 2019 )
as allowed for extensive exploration of individual differences in func-
ional brain organization. 

The application of brain parcellations is now commonplace. How-
ver, this practice hinges on four major assumptions ( Fig. 1 ) that, to our
nowledge, have never been evaluated empirically. The first assumption
s that the networks of interest are well recovered in the data extracted
rom a parcellation, such that the extracted data can be used to construct
etwork-specific measures. Furthermore, as most studies rely on a sin-
le parcellation, it is assumed that the various parcellations are equally
ble to capture or recapitulate the networks of interest. Given that adult-
erived parcellations are frequently applied to data from developmen-
al samples ( Alarcón et al., 2018 ; Fair et al., 2013 ; Jalbrzikowski et al.,
019 ; Lopez et al., 2019 ; Satterthwaite et al., 2013 ; Sylvester et al.,
018 ; Yerys et al., 2019 ), a second assumption is that these parcella-
ions reflect the topography of functional networks in children, and thus
hat the networks of interest will be accurately captured by these par-
ellations in developmental samples. Third, many of the available par-
ellations share highly similar labeling schemes, where networks that
hare similar spatial extents across the various parcellations also bear
he same network labels (e.g., “default network ”, “dorsal attention net-
ork ”, etc.). This shared labeling has led to the assumption that the net-
orks that are represented across the parcellations can be considered
nalogous. In other words, the default network identified in parcella-
ion scheme A is the same network as the default network identified in
arcellation scheme B. Thus, the parcellations are assumed to produce
eliable measurement of network properties such as average within net-
ork connectivity. Finally, though some studies replicate results using a

eries of parcellations ( Finc et al., 2020 Finc et al., 2021; Geerligs et al.,
015 ; Luppi et al., 2021 ; Tooley et al., 2020 ; Xia et al., 2018 ), a majority
f studies only employ a single parcellation. This practice presumes that
he various parcellations can be considered interchangeable, such that
arcellation selection does not have an impact on the results obtained. 

In the present study, we examine these four assumptions. To do so,
e selected a set of parcellation schemes commonly used ( Glasser et al.,
016 ; Gordon et al., 2016 ; Power et al., 2011 ; Schaefer et al., 2018 ;
eo et al., 2011 ). We were also interested in assessing the extent to
hich the meta-analytic platform NeuroSynth is able to produce sensi-
le networks maps. NeuroSythn.org allows researchers to identify task-
voked activity mappings ( Yarkoni et al., 2011 ; Lieberman and Eisen-
erger, 2015 ) using keywords. As researchers often refer to the primary
unctional networks when discussing task-evoked activity, primary func-
ional networks have also begun to be identified using NeuroSynth’s
eta-analytic approach ( Franzmeier et al., 2017 ; Wang et al., 2020 ).
e were interested in examining how well the NeuroSynth platform
2 
s able to identify functional networks, so included maps of four pri-
ary networks of interest (the default network, the control network,

he dorsal attention network, and the salience network) derived using
euroSynth.org. 

Using the eight selected parcellation schemes, we examined the fol-
owing questions: (1) Are the parcellations equally able to recover the
etworks of interest (i.e. does the parcellation-extracted data recapitu-
ate the expected correlational network structure defined by the parcel-
ations)? (2) Do these adult-derived parcellations well represent the net-
orks in children’s brains? (3) Are network properties, such as within-
etwork connectivity, reliably measured across parcellations? (4) Does
he parcellation selected impact the results with regard to individual
ifferences in network properties? To evaluate the fourth assumption,
e examine three common questions about individual differences in

unctional brain organization, including whether functional connectiv-
ty within networks of interest vary as a function of age, environmental
xperience and cognitive ability. Here, we focus on poverty as a mea-
ure of environmental experience. We examine these four assumptions
n two large samples of children and adolescents, focusing on four pri-
ary networks of interest that are widely studied and derived using
arcellation schemes: the default, control, dorsal attention, and salience
etworks. 

. Methods 

We implemented all analysis in two large samples of children and
dolescents that acquired information on age, environmental experi-
nces (e.g., poverty), and cognitive ability. 

Sample 1. A sample of 160 youth aged 8–17 were recruited to par-
icipate from the Seattle area between January 2015 and June 2017. Of
hese, 38 were excluded for the following reasons: fell asleep during scan
4), had incomplete resting-state scan (5), failed to successfully complete
reprocessing due to insufficient data (22), or other technical issues with
he scan (7). The final analytic sample consisted of 122 subjects age 8–
7 ( M = 12.8, SD = SS2.64; 59 male) with good quality resting-state
unctional magnetic resonance imaging (rsfMRI) data (6 min scans). The
ata were collected as part of a larger study investigating the effects of
hildhood maltreatment on brain structure and function. Sixty-four sub-
ects in the final sample had experienced maltreatment ( Weissman et al.,
020 ). We selected this sample due to the wide variation in age, envi-
onmental experience, and cognitive ability —factors that are the focus
f individual difference analysis used to examine the fourth study ques-
ion. The sample provides an excellent opportunity to examine whether
arcellation selection influences the magnitude of individual differences
bserved as a function of these characteristics. 

Sample 2 . We used data from the Pediatric Imaging, Neurocognition,
nd Genetics (PING) study. The PING repository is publicly available
o investigators through the PING Portal ( http://pingstudy.ucsd.edu ),
nd contains multimodal neuroimaging data, developmental histories,
nd behavioral and cognitive assessments of 1493 children and adoles-

http://pingstudy.ucsd.edu
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ents between the ages of 3 and 21. A total of 643 participants had
sfMRI data. A total of 313 subjects were excluded due to inadequate
can time or quality. The final sample consisted of 330 participants ages
 – 21( M = 14, SD = 5; 153 male) with good quality rsfMRI data (6 min
cans). For a detailed description of the PING data collection and repos-
tory see Jernigan et al. (2016 ). We selected this sample due to the large
ize and wide age range —to allow us to examine whether parcellation
cheme influences the magnitude of individual differences in network
roperties as a function of age. 

Imaging acquisition. Sample 1 . Scanning was performed on a
T Phillips Achieva scanner at the University of Washington In-
egrated Brain Imaging Center using a 32-channel head coil. T1-
eighted MPRAGE volumes were acquired (repetition time = 2530 ms,
E = 3.5 ms, flip angle = 7°, FOV = 256 × 256, 176 slices, in-plane voxel
ize = 1 mm 

3 ) for co-registration with fMRI data. Blood oxygenation
evel dependent (BOLD) signal during functional runs was acquired us-
ng a gradient-echo T2 ∗ -weighted echo planar imaging (EPI) sequence.
hirty-seven 3 mm thick slices were acquired sequentially and parallel
o the AC-PC line (TR = 2 s, TE = 25 ms, flip angle = 79°, inter-slice
ap = 0.6 mm, FOV = 224 × 224 × 132.6, matrix size = 76 × 74). Prior
o each scan, four images were acquired to allow longitudinal magneti-
ation to reach equilibrium. Sample 2. 

A standardized multiple-modality high-resolution structural MRI
rotocol was implemented at the nine Pediatric Imaging, Neurocogni-
ion, and Genetics (PING) sites and 12 scanners: Johns Hopkins Uni-
ersity (Philips – Achieva); Massachusetts General Hospital (Siemens
TrioTim 1); Massachusetts General Hospital (Siemens – TrioTim 2);
niversity of California at Davis (Siemens -TrioTim); University of Cal-

fornia at Los Angeles (Siemens -TrioTim 1); University of California at
os Angeles (Siemens -TrioTim 2); University of California at San Diego
GE – Signa); University of California at San Diego (GE – Discovery);
niversity of Hawaii (Siemens -TrioTim); University of Massachusetts

Philips – Achieva); Weill Cornell Medical College (Siemens -TrioTim);
ale University (Siemens -TrioTim). The protocol included a conven-
ional three-plane localizer, a sagittal 3D inversion recovery spoiled
radient echo T1-weighted volume optimized for maximum gray/white
atter contrast (echo time = 3.5 ms, repetition time = 8.1 ms, inver-

ion time = 640 ms, flip angle = 8°, receiver bandwidth = ± 31.25 kHz,
OV = 24 cm, frequency = 256, phase = 192, slice thickness = 1.2 mm).
he relaxation rates and scanner-specific gradient coil nonlinear warp-

ng were measured, and the latter corrected for, for all scanners, from all
ites. Sagittal 3D cube T2-weighted volume, gradient echo-planar imag-
ng scans and associated calibration scans for resting state functional
RI were also collected at all sites. Prospective motion correction for

on-diffusion imaging acquisition was implemented for a majority of
he data collected in San Diego and Honolulu. Scanning durations for
ach sequence of the protocol were T1 for 8:05, T2 for 4:25. For a de-
ailed account of the Sample 2 imaging data please see ( Fjell et al., 2012 ;
ernigan et al., 2016) and for site-specific scanner protocols please see
ttps://nda.nih.gov/edit_collection.html?id = 2607 . 

Resting-state fMRI preprocessing. The rsfMRI data, from both Samples
 and 2, were preprocessed following guidelines for optimal reduction of
he influence of motion artifact from Ciric et al. (2017) with the pipeline
mplemented using Make, a software tool that allows for the integration
f multiple software packages ( Askren et al., 2016 ). The first four vol-
mes of the resting state run were discarded. We then registered the
imeseries to the middle volume using FSL MCFLIRT ( Jenkinson et al.,
002 ). Linear, and non-linear transformations were estimated for regis-
ering each subject’s resting state timeseries to their T1 image, from the
1 to a sample-specific template, and from that template to Montreal
eurological Institute (MNI). Anatomical co-registration of the func-

ional data with each participant’s T1-weighted image and normaliza-
ion were performed using Advanced Normalization Tools (ANTs) soft-
are, version 2.1.0, because of superior registration within pediatric

amples ( Avants et al., 2011 ). We then performed slice-timing correction
using FSL slicetimer) ( Jenkinson et al., 2002 ), replaced outlier voxel-
3 
alues using AFNI 3dDespike ( Cox, 1996 ), and Gaussian spatial smooth-
ng using a 6 mm-FWHM smoothing kernel (FSL SUSAN) ( Smith and
rady, 1995 ). Next, we used AFNI 3dDeconvole ( Cox, 1996 ) to regress
uisance variables from the timeseries. These variables included a re-
ressor for volumes with framewise displacement > 0.5 mm, for which
he derivative of variance in BOLD signal across the brain (DVARS) ex-
eeded the upper fence (above 75th percentile + 1.5 x inter-quartile
ange), or for which signal intensity was more than 3 SD from the mean.
e included a total of 18 other nuisance regressors, including six motion

arameters and their six derivatives, signal from CSF and white matter
extracted prior to smoothing) and their derivatives, and the mean sig-
al across all voxels in the brain (i.e., global signal) and the derivative.
e did not use the recommended additional 18 regressors (represent-

ng the squared term of each of the 18 regressors included in the model)
 Ciric et al., 2017 ) because we did not have the effective degrees of
reedom necessary, with a substantial proportion of participants in both
amples failing preprocessing when these additional 18 regressors were
ncluded. We opted to retain more data using the best possible strat-
gy the data would allow while retaining the largest number of subjects
ossible in each sample. This choice is unlikely to have a meaningful
mpact on our results, because our goal was simply to evaluate whether
ifferences emerged in network properties as a function of which of the
 parcellation schemes was used. The data were then bandpass filtered
sing AFNI’s 1dBport to retain frequencies in the range 0.01 Hz < f <

.8 Hz. Subjects with at least 4.5 min of data following preprocessing
ere retained. The median percent of timepoints flagged in Sample 1

as 7.5% and the range was 0 − 23%. The median percent of timepoints
agged in Sample 2 was 8.6% and the range was 0 − 29%. 

Parcellation selection. We selected eight parcellations schemes com-
only used in developmental and clinical research, including the Power
011 scheme ( Power et al., 2011 ), the Yeo 2011 7-network parcella-
ion ( Yeo et al., 2011 ), the Gordon 2016 parcellation ( Gordon et al.,
016 ), the Glasser 2016 parcellation ( Glasser et al., 2016 ), and the
hree of the Schaefer 2018 parcellation schemes (100, 200, and 400
arcel schemes) ( Schaefer et al., 2018 ) ( Fig. 2 ). We also included net-
ork schemes derived from the NeuroSynth platform ( Yarkoni et al.,
011 ). To create the NeuroSynth mappings, we downloaded the for-
ard inference(uniformity test) meta-analytic term maps from the four
etworks of interest: the default network, the control network, the dor-
al attention network and the salience network. Maps were identified
n www.neurosynth.org using the following key word searches: “de-
ault mode network ”, “control network ”, “dorsal attention network ”,
nd “salience network ”. For each of the four maps obtained, we identi-
ed peaks within the clusters of activity in each map and drew 4 mm
pheres around the peaks, thus creating volume-based masks that could
hen be used to extract timeseries data. We acknowledge that these par-
ellations were generated using different analytical approaches, how-
ver the focus of this paper is not in examining the validity of any one
f those approaches over another. Instead, we are interested in examin-
ng how these parcellations, once established, compare when applied as
 priori network schemes. 

Networks of Interest . For the purposes of this evaluation, we focused
n four networks of interest: the default network (DN), the frontopari-
tal control network (CN), the dorsal attention network (DaN) and the
alience network (SaN). We elected to focus on these four networks,
s they have received the most attention in developmental and clini-
al work. Furthermore, these four networks are included in each of the
ight parcellations and are composed of at least two or more parcels
n each parcellation – a necessary property to evaluate within-network
onnectivity (i.e., to calculate the correlations between the regions in
 network). The auditory, visual, and somatomotor networks did not
t this specification in the Yeo parcellation and have been studied less

requently in clinical and developmental work. As a result, we did not
nclude the auditory, visual, or somatomotor networks in our analyses.
s seen in Fig. 2 , the default, control, and dorsal attention networks are

abeled similarly across the eight parcellations. It is important to note

https://nda.nih.gov/edit_collection.html?id=2607
http://www.neurosynth.org
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Fig. 2. The eight parcellation schemes selected 
for evaluation: Glasser 2016, Gordon 2016, 
NeuroSynth (keywords: “default network ”, 
“control network ”, “dorsal attention network ”, 
“salience network ”), Power 2011, Schaefer 
2018 (100, 200, 400), Yeo et al. (2011) . The 
legends detail the four networks of interest se- 
lected for examination: default, control, dorsal 
attention, salience. 
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hat what we are calling the “salience network ” is the least consistently
abeled network, with “cingulo-opercular ” and “ventral attention ” being
ther names used to describe a network that is generally comprised of re-
ions including the anterior insula, dorsal anterior cingulate cortex, and
ther regions in dorsomedial prefrontal cortex. Please see Uddin et al.
2019 ) for discussion of how inconsistent network nomenclature may
e impeding clear synthesis of findings, along with a proposed univer-
al taxonomy. All analyses focus on these four networks of interest as a
eans of evaluating the eight parcellations. 

Parcellation registration and timeseries extraction . Following prepro-
essing, each of the eight parcellation schemes were registered to
ach subject’s resting-state functional data. For the two volume-based
chemes (Power 2011 and NeuroSynth), registration of each parcellation
as conducted using ANTs (using the antsApplyTransforms function) to

ake the parcellation from MNI space to a study specific template, then
o native T1 space, and finally to the native resting-state functional space
 Avants et al., 2011 ). After each volume-based scheme was registered to
ach subject’s functional native space, the mean BOLD timeseries of each
arcel in each scheme was extracted using the FSL fslmeants function.
or the six surface-based parcellations ( Yeo et al., 2011 ; Gordon et al.,
016 ; Glasser et al., 2016 , and Schaefer et al., 2018 [100, 200, 400]),
ubject’s native resting-state functional data was first projected onto the
urface (using the FreeSurfer bbregister and mri_vol2surf commands).
ach parcellation scheme was then registered to the subject’s surface
pace using the FreeSurfer mri_surf2surf function. Finally, the timeseries
or each parcel was extracted using the FreeSurfer mri_segstats function.
ll following analyses were conducted using the extracted timeseries
ata. 

.1. Data analysis 

Code for all analyses is available at https://osf.io/bjde4/ . Data are
ot publicly available, but are available from the authors upon request.

Method to address question 1 : Are the parcellations equally
ble to recover the networks of interest? 

When a priori parcellations are used, it is assumed that the networks
f interest are well represented in the timeseries data extracted and that
he various parcellations are equally able to represent the networks of
nterest. To evaluate this assumption, we employed a technique that al-
ows one to assess how well data organically clusters into pre-defined
roupings that align with the functional networks of interest. The tech-
ique relies on assessing the difference in goodness of fit between two
ersions of a multi-dimensional scaling (MDS) procedure: unconstrained
nd constrained MDS as implemented in the R SMACOF package (ver-
ion 2.1.0 ; De Leeuw and Mair, 2009 ; ) in R version 4.0.0 ( R Core
eam, 2020 ). We briefly describe MDS and explain how unconstrainted
4 
nd constrained MDS can be used in conjunction to assess the extent
o which the networks of interest are represented in the timeseries data
xtracted from the various parcellation schemes. 

Multi-dimensional scaling. MDS is an exploratory unsupervised learn-
ng technique that allows the correlations between a set of items in
 multivariate dataset to be visualized using a spatial configuration
 Borg and Groenen, 2005 ; Borg et al., 2018 ). The primary result of an
DS analysis is a graphical plot, or configuration, that spatially illus-

rates the similarity of items, such that highly correlated items are plot-
ed near one another in space, and items that are negatively correlated
re spatially distant. If two items appear in the exact same location in
pace in the MDS configuration, the items are perfectly correlated. See
ig. 3 A for a visualization of an MDS configuration, in which the simi-
arity between parcel timeseries extracted using the Yeo et al. (2011) for
 single subject is visualized. To conduct an MDS analysis using a cor-
elation matrix, the matrix is first converted, using the equation below,
nto a dissimilarity matrix, which is the required input for MDS function
n the smacof package. 

 ( 𝑥, 𝑦 ) = 

√
1 − 𝑟 ( 𝑥, 𝑦 ) 

Here, r ( x,y ) denotes the Pearson correlation coefficient between vec-
ors (here parcel timeseries) x and y . By converting the correlation ma-
rix (where large values indicate similarity) into a dissimilarity matrix
where small values indicate similarity), the relationship between two
ariables( x,y ) is thus represented by a plottable proximity or distance:
 ( x,y ). The dissimilarity matrix is then used to solve for a spatial config-
ration in low-dimensional space (typically 2 dimensions for ease of vi-
ualization) where the distance between the points in the configuration
olution are as close as possible to the given input dissimilarities (prox-
mities) ( Mair, 2018 ). The minimization (goodness of fit) function used
o identify the ideal configuration solution is known as stress . Its value
the stress value) quantifies the extent to which the distances between
tems in the configuration plot are equal to the distances in the original
nput matrix. In an ideal solution (a stress value of 0), there would be
o difference between the distances between points in the configura-
ion plot and the input distance matrix. There are various types of MDS
echniques, the most common being unconstrained MDS ( Mair, 2018 ),
here no structural constraints are imposed on the configuration solu-

ion. Unconstrained MDS produces the lowest possible stress value (i.e.
roduces the configuration in which the distances between items in the
lot most closely resemble the proximities between items in the given
nput dissimilarity matrix). On the other hand, constrained MDS allows
he user to restrict the configuration solution using a priori groupings;
tems that belong to the same a priori grouping are forced to be spatially
lose together ( Borg and Lingoes, 1980 ; De Leeuw and Heiser, 1980 ;
eiser and Meulman, 1983 ; Mair, 2018 ). This is done by sectioning the
onfiguration space into the number of a priori groupings and constrain-
ng all items from each group to fall somewhere within their designated

https://osf.io/bjde4/


N.V. Bryce, J.C. Flournoy, J.F. Guassi Moreira et al. NeuroImage 243 (2021) 118487 

Fig. 3. A : Unconstrained MDS solution 
for the timeseries extracted from the 
Yeo et al. (2011) parcellation for the four 
networks of interest for a single subject. In this 
configuration, the timeseries data clearly sep- 
arate out into the networks of interest. B : The 
constrained MDS solution for the timeseries 
extracted from the Yeo et al. (2011) parcel- 
lation for the four networks of interest for a 
single subject. Though the stress value for the 
constrained MDS solution increases, the stress 
score is not highly impacted when the network 
constraints are added in the constrained 
MDS, as the network groupings were already 
present in the unconstrained solution. C: The 
unconstrained MDS solution for the timeseries 
extracted from the NeuroSynth scheme for the 
four networks of interest for a single subject. 
In this configuration the timeseries data do 
not clearly separate out into the networks of 
interest. D : The constrained MDS solution for 
the timeseries extracted from the NeuroSynth 
scheme for the four networks of interest for 
a single subject. Even within the constrained 
MDS solution, the NeuroSynth data fail to 
clearly separate, which is reflected in the 
large stress score. The large difference in 
stress scores between the unconstrained and 
constrained MDS solutions for the NeuroSynth 
scheme suggests that the networks of inter- 
est are poorly represented in the extracted 
timeseries data for this subject. 
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rea. As constrained MDS does not allow for a free solution, the stress
alue will necessarily be larger. 

As noted above, when a priori parcellations are used, it is assumed
hat the networks of interest are represented in the timeseries data ex-
racted. We based our analysis in the present study on the idea that
f the network groupings are indeed represented in the extracted time-
eries data, the data from each network should cluster together in an
nconstrained MDS solution. Fig. 3 A and C below illustrate the uncon-
trained MDS configuration plots for a single subject’s timeseries data
xtracted from the Yeo et al. (2011) parcellation and the NeuroSynth
aps for the four networks of interest. By examining the unconstrained
lots one can see that timeseries data from the Yeo et al. (2011) parcel-
ation organically separate into the four networks of interest. However,
he timeseries data from the NeuroSynth mappings fail to separate into
dentifiable network groupings. We can quantify how well the timeseries
ata cluster into the networks of interest by also fitting a regionally
onstrained MDS solution. In the constrained MDS, the timeseries from
egions within a given network (aka. grouping), as defined by each par-
ellation, are forced to fall within the same constrained portion of the
DS space (eg. SaN regions timeseries in the top left quadrant, DN re-

ions timeseries in the top right quadrant, DaN regions timeseries in
he bottom left, and CN regions timeseries in the bottom right). This is
onceptually equivalent to a cluster of nodes within a network model. 

The change in stress values (i.e., goodness of fit) between the uncon-
trained and constrained solutions can then be assessed. If the network
roupings are indeed represented in the data, the forced clustering of the
ata in the constrained MDS solution, will only have a small effect on the
tress value, as the data will already naturally fall into distinct spatial
5 
roupings. Therefore, the difference in the stress value between the un-
onstrained and constrained MDS should be small. If, however, the time-
eries data do not naturally cluster into the network groupings, the stress
alues for the constrained MDS will be significantly higher and will thus
esult in a large change in stress (or goodness of fit) between the uncon-
trained and constrained MDS solutions. We can therefore use the differ-
nce in the stress values between unconstrained and constrained MDS
olutions to assess how well the networks of interest are represented
n timeseries data extracted from a given parcellation. Fig. 3 B and D
llustrate the constrained MDS solutions for the Yeo et al. (2011) parcel-
ation and NeuroSynth schemes for the same single subject as the uncon-
trained MDS solutions. As seen in the figure, the Yeo et al. (2011) con-
trained MDS solution leads to a stress value of 0.212, and thus a stress
ifference of 0.054, versus the much higher stress difference of 0.235 be-
ween NeuroSynth’s unconstrained and constrained solutions. This sug-
ests that for this subject, the Yeo et al. (2011) parcellation is notably
etter than the NeuroSynth scheme at representing the networks of in-
erest. The metric of stress difference can therefore be used to determine
ow well the networks of interest are represented in the timeseries data
xtracted from a given parcellation. 

To evaluate whether the networks of interest are equally represented
n the timeseries data extracted, we calculated the stress difference be-
ween a constrained and an unconstrained MDS solution for each of
he eight parcellations, for each subject. Note that to solve for an MDS
olution, an initial starting configuration is required that is then op-
imized. We elected to use a Torgerson configuration (classical MDS)
s the initial starting configuration for the unconstrained MDS (instead
f a random start), as this initial start generally leads to among the
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owest stress value and further produces non-stochastic MDS solutions
 Borg and Mair, 2017 ; Mair et al., 2016 ). We then fit a mixed-effects
odel to examine whether stress differences (dependent variable) var-

ed significantly across parcellations (independent variable), with ob-
ervations nested within subject (ie. subject ID was associated with a
andom effect) (see R model syntax below). 

Stress.Difference ∼ Parcellation + (1 | SUB_ID) 

All mixed-effects modeling was performed using in the lme4 pack-
ge version 1.1.23 ( Bates et al., 2015 ) in R version 4.0.0 ( R Core
eam, 2020 ). 

Although MDS has been used to examine resting-state networks
 Gratton et al., 2018 ), it has not been used frequently as a method for
uantifying cortical networks. As such, we conducted a second analysis
sing more commonly used graph theory approaches to confirm these
esults, focusing specifically on network modularity. By examining the
ifference between the modularity of a data-driven clustering approach
walk trap) and modularity when the a priori network groupings are
pplied, we were able to evaluate the extent to which the a priori net-
orks are observed in the extracted data using an alternative approach.
ee supplemental materials for additional details on these analyses. 

Method to address question 2: Do these adult-derived par-
ellations well represent the networks in children’s brains? 

All parcellation schemes to date have been developed in large adult
amples. Applying these parcellation schemes in developmental samples
herefore assumes that the networks of interest are represented in the
ame way and to the same extent in children as in adults. To evaluate this
ssumption, we expanded the hierarchical linear model used to exam-
ne stress difference by parcellation (described above) by adding an age
erm, as well as interaction term for age by parcellation. To test if the in-
eraction term was significant, we compared this expanded model to one
n which age was included, but not allowed to interact. This comparison
as done using a likelihood ratio test (see R model syntax below). 

Model 1: Stress.Diff ∼ Age + Parcellation + (1 | SUB_ID) 
Model 2: Stress.Diff ∼ Age ∗ Parcellation + (1 | SUB_ID) 

If the adult-derived parcellations can capture the networks in chil-
ren and adolescence equally well as in adults, we would not expect to
ee a change in stress difference across the age range examined for any
f the parcellations. 

Methods to address question 3: Are network properties, such
s within network connectivity, reliably measured across parcellations?

One of the primary measures of network functional properties ex-
mined in developmental and clinical research is within-network func-
ional connectivity ( Alarcón et al., 2018 ; Jalbrzikowski et al., 2019 ;
opez et al., 2019 ; Satterthwaite et al., 2013 ; Sylvester et al., 2018 ;
an et al., 2019 ; Lydon-Staley et al., 2019 ; Reggente et al., 2018 ;
u et al., 2019 ). We therefore examined whether the parcellation
chemes produced reliable measures of functional connectivity within
ach of the four networks of interest (SN, CN, DN, DaN). To calculate
ithin-network functional connectivity, Fisher’s z -transformed Pear-

on’s correlation coefficients were computed between all homotopic
airings (intra-hemispheric regions) of parcels within a given network
nd then averaged. Only homotopic correlations were used in the cal-
ulation of average functional connectivity to avoid inflated estimates
riven by high correlations between inter-hemispheric medial struc-
ures, such as the posterior cingulate cortex ( Ciric et al., 2017 ). By av-
raging all homotopic pair-wise correlations within each network, we
6 
ere able to obtain a single measure of average functional connectivity
or the four networks of interest in each parcellation, for each subject. 

We used mixed-effects modeling to assess whether the mean level of
ithin network functional connectivity was significantly different across

he eight parcellations. Four models were estimated, one for each of the
our networks of interest, with average network functional connectivity
s the dependent variable, parcellation as the independent variable, and
bservations nested within subjects (see R model syntax below). 

Network.Connectivity ∼ Parcellation + (1 | Sub_ID) 

Models were also conducted excluding parcellations that failed to
ecover the networks of interest (ie. failed assumption 1 above), to con-
rm that such parcellations are not driving results. We additionally ex-
mined whether parcellation characteristics such as number of nodes
ithin network, the extent of surface covered by parcellation, and data
uality (i.e., motion) influenced connectivity scores. Please see the sup-
lemental materials for additional details. 

We then examined the extent to which subjects maintained their rank
rder of within-network connectivity across the parcellations (ie. exam-
ned the inter-parcellation consistency of network connectivity scores).
o evaluate this consistency across parcellations, between-parcellation

ntra-class correlation coefficients (ICC) estimates of within-network
onnectivity were calculated for each of the networks of interest, us-
ng the psych package version 2.0.9 ( Revelle, 2020 ), based on a single
ater/measurement, consistency, two-way mixed effects model ( Koo and
i, 2016 ). Specifically, we extracted the mean squared error ( MS E ) and
he mean squared row ( MS R ) from the Psych ICC function output and
sed those values to calculate the ICCs using the model below ( Koo and
i, 2016 ). 

𝑀 𝑆 𝑅 − 𝑀 𝑆 𝐸 

𝑀 𝑆 𝑅 + ( 𝑘 − 1 ) 𝑀 𝑆 𝐸 

Given the poor performance of Neurosyth in the analyses described
bove, as well as the uncorrelated nature of the Neurosynth functional
onnectivity estimates with the other parcellations, the Neurosynth par-
ellation was also excluded from this analysis. ICC estimates were boot-
trapped using the boot package version 1.3.25 ( Canty and Ripley, 2020 )
uch that 95% confidence intervals (the percentile method) could be cal-
ulated. Note that during bootstrapping, the same 5000 samples were
sed to calculate each network’s consistency estimates. Furthermore, to
xamine whether a given network was more reliable across the parcella-
ions than the others, the differences between network consistency (ICC)
stimates were calculated between each of the possible network pair-
ngs (SaN 

–CN, SaN-DN, SaN-DaN, CN-DN, CN-DaN, DN-DaN); eg. SaN
CC (0.70) – DN ICC (0.50) = difference of 0.2. This allowed for the ex-
mination of whether, for example, the salience network produced more
eliable estimates of functional connectivity than the control network or
he default network. 95% confidence intervals for between-network ICC
ifferences were calculated by subtracting each network’s bootstrapped
CCs (5000 samples) from all possible network pairings (SaN 

–CN, SaN-
N, SaN-DaN, CN-DN, CN-DaN, DN-DaN. 

Method to address question 4: Does the parcellation selected
mpact the results with regard to individual differences in network prop-
rties such as within network connectivity? 

A primary focus in developmental and clinical work that employs
arcellation schemes is examining individual difference in network con-
ectivity as a function of variables of interest, such as age ( Baum et al.,
020 ; Jalbrzikowski et al., 2019 ; Lopez et al., 2019 ), the presence of
ental health problems ( Franzmeier et al., 2019 ; Kebets et al., 2019 ;

att et al., 2020 ; Yerys et al., 2019 ), environmental experiences —such
s poverty ( Tooley et al., 2020 ; Chan et al., 2018 ), or in relation to spe-
ific cognitive capacities, such as intelligence or executive functioning
 Reineberg and Banich, 2016 ; Finc et al., 2020 ; Murphy et al., 2020 ;
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larcón et al., 2018 ). Studies generally rely on a single parcellation
cheme to estimate functional connectivity, with a few notable excep-
ions ( Finc et al., 2020 ; Tooley et al., 2020 ; Xia et al., 2018 ; Shafiei et al.,
019 ). Given that few studies examine whether results replicate when
sing other parcellations, the assumption that the parcellations are inter-
hangeable and will produce equivalent results has not been empirically
valuated. 

To do so, we examined the extent to which parcellation selection
mpacts the results of three distinct hypotheses that parallel questions
ommonly explored in research on individual differences in functional
onnectivity. First, we examined the whether the association between
unctional connectivity and age varies as a function of parcellation (in
ample 2, which had a wide age range of 3–21 years). We examined
ge effects for all four of the networks of interest. We conducted a
odel comparison between three mixed-effects models (with observa-

ions nested within subjects) examining the association between within-
etwork connectivity (dependent variable) and age (independent vari-
ble). In the first model no term for parcellation was included. In the
econd model a term for parcellation was added, and finally in the third
odel an interaction term between age and parcellation was also added.
e then conducted a likelihood ratio test to examine if a model with an

nteraction term for parcellation was a better fit. If parcellation selec-
ion does not impact the results of a given hypothesis, a model without
n interaction term for parcellation should fit as well as a model that
ncludes an interaction term (see R model syntax below). 

Model 1: Connectivity ∼ Age + (1 | Sub_ID) 
Model 2: Connectivity ∼ Age + Parcellation + (1|Sub_ID) 
Model 3: Connectivity ∼ Age + Parcellation + Age:Parcellation +

(1|Sub_ID) 

Second, we examined whether the association between network con-
ectivity and living in a family below the poverty line varies as a func-
ion of parcellation (in Sample 1 only, as Sample 2 did not include
easures of family size that are necessary to estimate poverty status).
overty was defined as those subjects whose family income was below
he poverty line for a family of that size, based on Census thresholds in
he year the study was conducted. We estimated a similar mixed-effects
odel comparison as described and illustrated above for age above, but
ith poverty modeled as the independent variable and default connec-

ivity as the dependent. Finally, we also examined whether the associa-
ion between control network connectivity and executive function (inhi-
ition) varies as a function of parcellation (in Sample 1). Inhibition was
easured using a standardized task —the arrows inhibition task from

he NEPSY-II ( Brooks et al., 2009 ), which assesses inhibition of an au-
omatic response. Participants viewed multiple rows of black and white
rrows pointing either up or down. In the baseline trial, participants
ere asked to say the direction that each arrow was pointing. In the

nhibition trial, participants were asked to say the opposite direction
hat each arrow was pointing. The time taken to complete the baseline
rial was subtracted from the time required to complete the inhibition
rial. Larger latencies indicate worse inhibitory control. We conducted a
imilar mixed-effects model comparison as described above for age and
overty, but with inhibition modeled as the independent variable and
ontrol connectivity as the dependent variable. 

. Results 

Results - Question 1: Are the parcellations equally able to
ecover the networks of interest? 

We used a multi-dimensional scaling technique to assess the extent to
hich the networks of interest are recovered in data extracted from the
ight parcellations evaluated. Fig. 4 A illustrates the stress values for the
 n

7 
onstrained and unconstrained MDS solutions in Sample 1, which makes
pparent the relative change in stress between the two models for each
arcellation. As seen in Fig. 4 B, the mean stress difference (constrained
DS solution stress – unconstrained MDS solution stress) is significantly

ifferent across the eight parcellations evaluated (F(7, 847) = 230.14,
 < 0.001) in Sample 1. The NeuroSynth mapping exhibits the high-
st overall stress difference, indicating that this method of timeseries
xtraction is least able to reconstruct the networks of interest. The other
even parcellations produce values of stress difference that are much
ore similar than NeuroSynth, however the stress difference remained

ignificantly different across the remaining 7 parcellations when Neu-
oSynth was excluded from the analysis ( F (6, 726) = 4.26, p < 0.001).
iven that the unconstrained stress value will always be smaller than

he constrained MDS stress value, we did not test whether stress dif-
erences for each parcellation alone are different from zero (i.e. a one-
ample t -test). Similar results were observed within Sample 2 ( Fig. 4 C
nd D). There was a significant difference in stress difference across the
ight parcellations ( F (7, 2303) = 544.41, p < 0.001), and NeuroSynth
xhibited a notably larger stress difference relative to the other seven
arcellations. Again, results remained significant when NeuroSynth was
xcluded from the analysis ( F (6, 1974) = 21.6, p < 0.0001). 

We found consistent results when using the additional modularity
ifference approach (see Fig. S2) as when using the unconstrained versus
onstrained MDS stress difference approach illustrated above, where the
arcellations exhibit significantly different modularity differences, F (7,
43) = 652, p < 0.001. Specifically, the NeuroSynth mapping exhibits
he highest overall modularity difference, confirming that this method of
imeseries extraction is least able to reconstruct the networks of interest.
ike in MDS approach, the other seven parcellations produce values of
odularity difference that are much more similar. 

Results - Question 2: Do these adult-derived parcellations
ell represent the networks in children’s brains? 

To assess whether the functional networks identified in parcellation
chemes developed in adults are well-represented in data from children,
e examined whether the stress difference ––which estimates how well

he extracted data recapitulate the networks –– varies as a function of
ge. If stress difference decreases as a function of age, this would sug-
est that the networks of interest are less identifiable within data from
hildren than adults. Results in Sample 1 suggest that the association
f the stress difference with age varies by parcellation ( 𝜒2[7] = 22.2,
 = 0.0023, ΔAIC = − 8.3) ( Fig. 5 A). This overall result was driven
y the NeuroSynth parcellation, which showed an significant increase
n stress difference with age relative to the grand mean ( b = 0.0034,
 (840) = 3.662, p = 0.00026). Given that NeuroSynth was found to per-
orm poorly in terms of network recapitulation ( Fig. 4 D) and also ex-
ibited a significantly different age effect, we ran the analysis again
fter excluding NeuroSynth. When we repeated the model comparison
escribed above, the age by parcellation interaction was no longer sig-
ificant ( 𝜒2[6] = 11.6, p = 0.072, ΔAIC = 0.4). Furthermore, a model
ith a main effect for age did not fit significantly better than a model
ithout age ( 𝜒2[1] = 1.9, p = 0.17, ΔAIC = 0.1). Similar results were
lso observed within Sample 2, where a model with a main effect for age
lso did not fit significantly better than a model without age included
 𝜒2[1] = 9.6, p = 0.21, ΔAIC = 5) ( Fig. 5 B). This suggests that, excluding
euroSynth, the functional networks in the parcellations derived from
dult data were similarly represented in pediatric data. 

Results - Question 3: Are network properties, such as within
etwork connectivity, reliably measured across parcellations? 
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Fig. 4. A : The stress values of the uncon- 
strained (light gray) and constrained (dark 
gray) MDS solutions for each parcellation 
(Sample 1). The stress difference (between 
unconstrained and constrained MDS) is illus- 
trated by the dashed turquoise line. B : The 
stress difference (constrained stress minus un- 
constrained stress) for each parcellation ex- 
amined (Sample 1). C : The stress values of 
the unconstrained (light gray) and constrained 
(dark gray) MDS solutions for each parcella- 
tion (Sample 2). The stress difference (between 
unconstrained and constrained MDS) is illus- 
trated by the dashed turquoise line. D : The 
stress difference (constrained stress minus un- 
constrained stress) for each parcellation exam- 
ined (Sample 2). 

Fig. 5. A : Stress difference by age by parcel- 
lation for the Sample 1 B : Stress difference by 
age by parcellation for the Sample 2. With the 
exception of NeuroSynth, stress difference did 
not significantly vary by age in either sample. 
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Measures of within-network functional connectivity varied signifi-
antly by parcellation for each of the four networks assessed: salience
 F (7, 850) = 76, p < 0.0001), control (F(7, 850) = 93, p < 0.0001), dor-
al attention ( F (7, 850) = 92, p < 0.001), and default ( F (7, 850) = 330,
 < 0.0001). As seen in Fig. 6 A, the salience network exhibited the
east variability in within-network connectivity across the eight par-
ellations, followed by the control network ( Fig. 6 B). The default net-
ork ( Fig. 6 C) and the dorsal attention network ( Fig. 6 D) exhibited
ighly variable within-network connectivity, with NeuroSynth produc-
ng the lowest scores and Yeo et al. (2011) producing the highest.
ll of these results were consistent in Sample 2, with salience ( F (7,
300) = 360, p < 0.0001), control ( F (7, 2300) = 390, p < 0.0001),
efault ( F (7, 2300) = 720, p < 0.0001), and dorsal attention ( F (7,
300) = 340, p < 0.001) networks all showing significant differences
n average functional connectivity across the eight parcellations as-
essed. A similar pattern of variability in connectivity measures across
he parcellations was also observed, with the default and dorsal atten-
ion networks exhibiting the most variability, followed by the control
nd then the salience network. The pattern of results in both Samples
8 
 and 2 is the same when NeuroSynth is excluded from the analysis
 p < 0.0001 for all comparisons). We conducted additional analyses to
xamine whether parcellation characteristics, such as the number of
odes (i.e. parcels) in a network, extent of surface coverage, or data
uality (i.e., motion) influenced estimates of within-network connec-
ivity. A full discussion of these results is in the Supplement. Briefly,
unctional connectivity was negatively associated with the number of
odes in a network, b = − 0.00149, t(28.8) = − 2.12, p = 0.0424, (see
ig. S3A), and varied significantly as a function of parcellation surface
overage, F (3300) = 110, p < 0.0001, (see Fig. S3B). In contrast, frame-
ise displacement —a metric of data quality —was not associated with

unctional connectivity, b = − 0.0817, t (120) = − 0.993, p = 0.323 (see
ig. S3C). 

We also examined whether the various parcellations produce reliable
easures of within-network connectivity, which would imply that sub-

ects maintain consistent rank order in functional connectivity within a
articular network across the parcellations examined. To examine the
nternal consistency of the parcellation-derived connectivity scores, we
alculated reliability (ICC) measures for each of the networks of inter-
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Fig. 6. Measures of average functional connec- 
tivity by parcellation for each of the four net- 
works of interest. Connectivity varied signifi- 
cantly across the parcellations in all the net- 
works assessed, including ( A ) salience ( B ) con- 
trol ( C ) default and ( D ) dorsal attention in 
both Sample 1 (dark color) and Sample 2 (light 
color). gray dashed line represents the grand 
mean connectivity (Sample 1) for each of the 
networks. 

Fig. 7. Consistency of functional connectivity 
across the parcellations for each of the net- 
works of interest (salience, control, default, 
dorsal attention) in Sample 1. NeuroSynth was 
excluded from this assessment, given its poor 
performance in the preceding analyses. A : Cor- 
relation matrices of functional connectivity by 
parcellation for each of the networks of in- 
terest. B : Consistency estimate for each net- 
work of interest (across the parcellations exam- 
ined) and bootstrapped confidence intervals. 
C : Differences in the consistency of connectiv- 
ity between networks, illustrating that some 
networks exhibit more consistent connectivity 
scores across the parcellations (salience and 
control networks). 
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st. Note that, given the poor performance on NeuroSynth in the analy-
es described above, NeuroSynth was excluded from this evaluation. As
een in Fig. 7 A, the salience network produced the most reliable scores
ith an ICC of 0.70, suggesting moderate consistency across parcella-

ions ( Koo and Li, 2016 ). As illustrated in Fig. 7 C, functional connectiv-
ty estimates within the salience network were significantly more sta-
le across parcellations than the other three networks (SaN 

–CN: 95%
I [0.00990 0.159]; SaN-DN: 95% CI [0.117 0.298]; SaN-DaN: 95%
I [0.139 0.335]). The control network’s consistency across parcella-
ions was significantly higher than both the default (CN-DN: 95% CI
0.0358 0.212]) and dorsal attention (CN-DaN: 95% CI [0.0432 0.261])
etworks. However, with an ICC of 0.62, the control network still ex-
ibited relatively poor consistency. The default (ICC = 0.5) and dorsal
ttention (ICC = 0.47) networks produced even lower consistency esti-
ates of within-network function connectivity, that did not differ sig-
ificantly from one another (DN-DaN: 95% CI [ − 0.0823 0.140]). Fig. 7 A
 i  

9 
lso displays correlation matrices of within-network connectivity values
cross the parcellation schemes. 

Similar results were found in Sample 2, where the salience network
as found to be the most reliable (ICC = 0.69), followed by the con-

rol (ICC = 0.62), default (ICC = 0.5), and dorsal attention (ICC = 0.32) net-
orks ( Fig. 8 ). The only difference obtained in Sample 2 was that the
efault network was significantly more reliable than the dorsal attention
etwork (DN-DaN: 95% CI [0.103 0.258]). 

Results - Question 4: Does the parcellation selected impact
he results with regard to individual differences in network properties
uch as within-network connectivity? 

Finally, we also assessed the extent to which parcellation selection
mpacts the interpretation of putative results regarding individual dif-
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Fig. 8. Consistency of functional connectivity 
across the parcellations examined for each of 
the networks of interest (salience, control, de- 
fault, dorsal attention) in Sample 2. A : Correla- 
tion matrices of functional connectivity by par- 
cellation for each of the networks of interest. 
B : Consistency estimate for each network of in- 
terest (across the parcellations examined) and 
bootstrapped confidence intervals. C : Between- 
network consistency difference scores. 
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erences in functional connectivity as a function of age, poverty, and
ognitive function. Specifically, we examined the whether the associa-
ion of network connectivity with age (Sample 2), poverty (Sample 1),
nd executive function (Sample 1) varied significantly as a function of
arcellation. We examined these associations using each of eight par-
ellation schemes, and found that for each of the relationships assessed,
he effects varied significantly as a function of parcellation. 

The eight parcellation schemes examined produced varying results
n the association between network connectivity and age ( Fig. 9 A). We
ound that a model that includes an interaction term for age by par-
ellation fit better for three of the four networks of interest (SaN, CN
nd DN), suggesting that the association between network connectiv-
ty and age varied significantly as a function of parcellation for these
hree networks. For the salience, control network, and default net-
orks, a model that included an interaction term for age by parcella-

ion fit significantly better than a model without (SaN: 𝜒2[7] = 84.7,
 < 0.0001, ΔAIC = 70.7; CN: 𝜒2[7] = 27.2, p < 0.001, ΔAIC = 13.2;
N: 𝜒2[7] = 24.9, p < 0.001, ΔAIC = 10.9). In contrast, model fit did
ot improve for the dorsal attention network when adding an interaction
erm for age by parcellation (DaN: 𝜒2[7] = 7.7, p = 0.360, ΔAIC = − 6.3).
hese finding suggest that the association between age and network con-
ectivity varies meaningfully across parcellations for three of the four
etworks. We conducted a follow-up simple slopes analyses for the asso-
iation between age and network connectivity (for SaN, CN and DN) for
ach of the parcellations examined to assess whether there is an identi-
able pattern in the effects ( Aiken et al., 1991 ). As seen in Fig. 9 A (and

llustrated in greater detail for the default network in Fig. 9 B and C),
here was no consistent pattern in terms of which parcellations produce
ignificant associations. This follow-up simple slopes analysis addition-
lly illustrates what would happen if eight independent researchers each
elected one of the eight parcellations and conducted a single hypothesis
est (i.e., of the association between age and functional connectivity) us-
ng the currently accepted approach in the field, which is to use a single
arcellation scheme without testing the robustness of effects to parcel-
ation selection. As demonstrated in Fig. 9 , when used in this way, use
f different parcellations would lead to different conclusions about the
ssociation of age with functional connectivity. 

The association between functional connectivity and poverty also
aried significantly as a function of parcellation for the default net-
ork ( Fig. 10 ), but not the other three networks (no significant inter-
m  

10 
ction or main effects). A model examining the association between
efault connectivity and poverty with an interaction term for parcel-
ation by poverty fit significantly better than one that did not include
his interaction ( 𝜒2[7] = 30.6, p < 0.001, ΔAIC = 16.6) As detailed
n Fig. 10 B, a follow-up simple slopes analysis revealed that a signif-
cant negative association was observed between poverty and default
onnectivity in three parcellation schemes, and no association in five
arcellation schemes. While this could be an issue of differing degrees
f consistency and therefore statistical power across the various par-
ellations, we would expect to see variability in the confidence bands
n such a case, rather than in the point estimates. However, as seen in
ig. 10 A, there is notable variability in both the point estimates, as well
s in the confidence in those estimates. 

Finally, the eight parcellation schemes examined also produced vary-
ng results in the association between control network connectivity and
erformance on an inhibitory control task ( Fig. 11 A). A model that in-
luded an interaction term for parcellation by inhibition performance
t significantly better than one that did not ( 𝜒2[7] = 32.1, p < 0.001,
AIC = 18.1). A simple slopes analysis revealed that significant results
ould be obtained when employing any of the three Schaefer parcella-

ions, and null results would be obtained for the other five parcellations.
s in the other two analyses detailed above, there was notable variabil-

ty in the beta estimates, as well as in the confidence in those estimates.

. Discussion 

In the present study we examined four major assumptions made
hen applying brain parcellation schemes to identify resting-state func-

ional networks. We found that the primary networks identified in the
arcellations are equally well represented in the data extracted using
he various schemes (with the exception of NeuroSynth). Furthermore,
e found that networks of interest were well represented in children’s
ata, despite the use of adult-derived parcellations for network iden-
ification. However, the various parcellation schemes did not produce
eliable measures of within-network functional connectivity, and par-
ellation selection had meaningful effects on the results of hypothesis
ests examining individual differences in functional connectivity as a
unction of age, poverty, and cognitive function. 

Network recapitulation. With the exception of the NeuroSynth-derived
aps, the other seven parcellations performed similarly at recapitulat-
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Fig. 9. Examining the association between age 
and functional connectivity as a function of 
parcellation (Sample 2). A : Results of a model 
comparison evaluating whether the addition of 
an interaction for age by parcellation results 
in a better fit than a model with no interac- 
tion term for each of the networks of interest. 
The association between age and network con- 
nectivity varies significantly as a function of 
parcellation for the salience, control, and de- 
fault networks, but not for the dorsal atten- 
tion network. For networks with a significant 
interaction of age and parcellation, we pro- 
vide beta estimates and p-values for the sim- 
ple slopes of the association between age and 
functional connectivity for each of parcellation. 
Greater details on these associations are pro- 
vided for the default network in panels B,C. 
B : Figure depicts substantial variability in the 
point estimates and confidence intervals for 
the association of age with default connectiv- 
ity for each of the parcellations. Significant re- 
sults would have been obtained if an indepen- 
dent researcher had selected either the Glasser, 
NeuroSynth or Yeo, but not one of the other 
five parcellations. C : Plots of the association be- 
tween age and default connectivity for each of 
the eight parcellations. 

Fig. 10. Examining the association of poverty 
with default network connectivity as a func- 
tion of parcellation in Sample 1. A : The point 
estimates for the association of poverty with 
default connectivity for each of the parcella- 
tions examined. There is notable variability in 
the point estimates, as well as the confidence 
in those estimates. B : The parcellation-specific 
associations between poverty and default con- 
nectivity. Significant results would have been 
obtained if an independent researcher had se- 
lected either Gordon, Yeo or Schaefer 400, but 
not in the other five parcellations. 
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ng the networks of interest in the parcellation-extracted resting-state
unctional connectivity data. This suggests that various parcellations
re able to capture network-level functional brain organization, when
pplied as a priori schemes. NeuroSynth is clearly divergent from the
ther seven schemes in terms of methodological approach, as it relies
n meta-analytic synthesis of task-based activity identified through key-
ords used cognitive neuroscience work ( Yarkoni et al., 2011 ). Though

he use of NeuroSythn maps to identify primary functional networks
s less common, we were interested in examining the extent to which
he meta-analytic patterns of task-based activity discussed as the pri-
ary functional networks (ie. the “default network ”) actually hold up

gainst parcellations derived using resting-state data. As indicated by
ur findings, the resting-state network maps derived using NeuroSynth
11 
ail to recapitulate the networks of interest. This suggests that though
esearchers label or discuss specific patterns of task-based activity as
alling into the now canonical functional networks, there is a clear sep-
ration between the networks identified at rest from the patterns of ac-
ivity seen in task-based analysis. While tasks may recruit areas that
all within canonical functional networks, task demands may also lead
o activation of other regions that may not necessarily belong to the
ame functional networks. NeuroSynth failing to recapitulate the net-
orks of interest calls into question the overlap between patterns of ac-

ivity observed in task and networks derived using connectivity-based
arcellation approaches. These findings further call for careful atten-
ion to be paid to labeling task-based activity patterns as the canonical
unctional networks. There has been work to identify overlap between
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Fig. 11. Examining the association of exec- 
utive function (performance on an inhibitory 
control task) and control network connectiv- 
ity as a function of parcellation in Sample 1. 
A : The beta estimates for the relationship asso- 
ciation of inhibition with control connectivity 
for each of the parcellations examined. There 
is notable variability in the beta estimates, as 
well as the confidence in those estimates. B : 
The parcellation-specific relationships between 
inhibition and control connectivity. Significant 
results would have been obtained if an inde- 
pendent researcher had selected any of the 
Schaefer parcellations, but not the other five 
parcellations. 
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ask-based activity and functional connectivity in low-level tasks such
s finger tapping ( Gordon et al., 2016 , 2017 ; Laumann et al., 2015 ),
nd recent work has extended these findings to higher-order cortical
etworks that appear to be preferentially recruited for various complex
unctions ( Braga et al., 2020 ; DiNicola et al., 2020 ). However, it is im-
ortant to note that the tasks used to evaluate network recruitment were
pecifically designed to dissociate network functioning. Tasks with more
omplex demands that were not designed to intentionally dissociate net-
ork functioning are likely to lead to less clear preferential network re-

ruitment. This suggests that very careful attention should be paid when
aking conclusions about network recruitment during tasks that are ex-

mining broad cognitive abilities, as opposed to tightly designed tasks
imed at eliciting network specific recruitment. There is much work to
e done in exploring the recruitment of cortical association networks
uring complex cognitive tasks. 

The use of adult-derived parcellations in developmental samples. The ap-
lication of adult-derived brain parcellations in developmental samples
resumes that these parcellation schemes are representative of the pri-
ary functional networks in children. By examining the extent to which
etwork recapitulation varied as a function of age and parcellation, we
ere able to assess the validity of employing these parcellations in devel-
pmental samples. With the exception of NeuroSynth, the parcellations
how no significant change in stress difference with age in either sam-
le, including one with a wide age range (3–21 years). These findings
uggest that the networks of interest in parcellations derived from adult
ata are represented equally well in resting-state data from children as
dults. These findings have clear methodological and conceptual im-
lications with regard to understanding the development of functional
etworks. Had the extent of network recapitulation varied significantly
ith age, it would have suggested that the boundaries of the primary
etworks defined in adult-derived parcellations are not exemplary of the
etworks in children. Such a finding would suggest that the functional
etworks undergo drastic changes in spatial layout and extent across de-
elopment. However, we found this not to be the case, suggesting that
unctional networks observed in adults are generally established early
n development and closely resemble the networks observed in adults. 

While our finding revealed that adult-derived parcellations gener-
lly reflect the networks in children’s brains, our work is constrained
y the use of rigid group-derived parcellations to define the networks.
ecent developmental work has found that the functional networks do
xhibit subtle yet meaningful changes in topography through develop-
ent ( Cui et al., 2020 ). The goal of our work was to examine whether

he general network structure in children could be captured by adult
erived parcellation schemes, which we found to be largely the case.
owever, we are likely to have missed subtle changes that will likely
rove to be meaningful in understanding how the functional networks
hange across development. Additionally, the application of a parcella-
ion assumes that a network’s topography is exactly the same across
12 
ll subjects. Recent precision neuroscience work in densely-sampled
dults has begun examining the primary functional networks by de-
iving individual-specific parcellations ( Braga et al., 2019 ; Braga and
uckner, 2017 ; Gordon et al., 2017 ; Gratton et al., 2018 ; Kraus et al.,
021 ; Laumann et al., 2015 ) and has revealed that topographies of asso-
iation networks are highly idiosyncratic across individuals ( Hill et al.,
010a ; Laumann et al., 2015 ; Kong et al., 2019 ). By relying on group-
veraged parcellations, we miss the opportunity to examine how this
diosyncratic network organization and topography emerges and how
nvironmental experience and other factors may shape this develop-
ent. In short, though we did not find significant change in network

tructure across development, suggesting that the adult derived parcel-
ations can capture general network structure in children, much could
e gained by moving away from the rigid use of a priori parcellations to
efine these networks. 

Consistency of network-specific measures derived from parcellation-

xtracted data. Although the various parcellations performed similarly
t recapitulating the networks of interest, measures of within-network
unctional connectivity varied meaningfully across parcellations, partic-
larly for the default and dorsal attention networks. Several parcellation
haracteristics influenced functional connectivity estimates, including
umber of nodes and degree of coverage of the cortex. Furthermore,
stimates of within-network connectivity had moderate to poor consis-
ency across the parcellations. This means that participants with rela-
ively high functional connectivity within a particular network relative
o others in a sample in one parcellation scheme would not necessar-
ly have high connectivity in that same network in another parcellation
cheme. This finding is concerning, as it suggests that parcellation choice
eaningfully influences estimates of functional connectivity. 

The salience network was the least consistently labeled network
cross the various parcellations, but produced the most reliable con-
ectivity estimates, followed by the control network. The default and
orsal attention networks exhibited the lowest consistency. The lack of
onsistency within the default and dorsal attention networks was largely
riven by the anticorrelated/uncorrelated nature of connectivity esti-
ates from the Glasser parcellation ( Glasser et al., 2016 ), which was
erived using multi-modal imaging data unlike the other parcellations
erived using rsfMRI only. This suggests that the “default ” and “dorsal
ttention ” networks identified within the Glasser parcellation should not
e considered synonymous to those networks sharing the same labels
cross the other parcellations examined. These findings suggest caution
s advised when selecting parcellations and when using the results of
 given study to draw generalized conclusions about “canonical ” func-
ional networks. While there does appear to be some consistency in the
eneral extent of networks identified in parcellations developed using
arious methodological approaches, our results suggest that the vari-
nce in extent of the networks defined in each parcellation can have
ignificant impact on connectivity measures derived from parcellation-
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xtracted data. Furthermore, these findings suggest caution is warranted
hen drawing parallels between networks identified across the various
arcellations, suggesting a “ground truth ” of brain organization has yet
o be established from our current parcellation practices. 

A major limitation of the parcellations employed is that they are de-
ived from group-averaged data. Recent work in densely-sampled indi-
iduals demonstrates that many of the functional networks identified in
roup-averaged data are comprised of distinct yet highly interdigitated
etworks that support divergent functional abilities ( Braga et al., 2019 ;
raga and Buckner, 2017 ; DiNicola et al., 2020 ). These findings raise

mportant questions about the utility of group-averaged data for future
ork on functional brain organization and suggests that studies exam-

ning individual differences such organization may be well served by
oving away from the application of a priori parcellations and toward

he use of individual-level parcellations. Though such methods require
ore data from each individual, the knowledge gained from such ap-
roaches is likely to be illuminating. 

Impact of parcellation selection on results . In developmental and clini-
al research, it is common practice to conduct analyses only using a sin-
le parcellation scheme. This assumes that parcellation selection does
ot have an impact on the interpretation of the results. Our findings
hallenge this assumption. A range of analyses focused on differences
n functional connectivity by age, poverty, and cognitive function, re-
ealed that parcellation selection had a significant and meaningful im-
act on the interpretation of results. For each of the associations ex-
mined, roughly three of the eight parcellations produced significant
esults, while the other five produced null results. Furthermore, we ob-
erved meaningful variability not only in the statistical significance of
he estimates, but also in the point estimates. These findings suggest
hat parcellation selection can have a significant influence on the re-
ults obtained in studies examining individual differences in resting-
tate functional connectivity, particularly if only a single parcellation
s used. Given this, we caution researchers from relying on a single par-
ellation in their analysis pipeline unless they have strong theoretical
eason to do so. Furthermore, we would recommend employing a series
f schemes and potentially even performing a specification curve anal-
sis ( Del Giudice and Gangestad, 2021 ; Simonsohn et al., 2015 ) to con-
rm the robustness of results. There are analysis pipelines, such as the
CP pipeline ( Ciric et al., 2018 ), built to be compatible with fmriPREP
 Esteban et al., 2019 ) output and the Brain Imaging Data Specification
 Gorgolewski et al., 2016 ), that make such replications feasible by pro-
iding researchers with the option of outputting timeseries extracted
rom multiple parcellation schemes automatically. By conducting such
eplications, researchers can be confident that their results are not con-
ingent on parcellation selection. 

Furthermore, large population-based samples such as the Adolescent
rain and Cognitive Development (ABCD) study ( Casey et al., 2018 ) of-
er an opportunity to study not only development and individual differ-
nces in network connectivity, but also to evaluate the impact of par-
ellation choice on results in very large samples, as well as confirm ro-
ustness of results to parcellation selection. However, the ABCD study
urrently only offers the resting-state time series data extracted using
he Gordon 2016 parcellation in their tabulated data. Therefore, indi-
idual researchers are not easily able to additionally examine the effect
f parcellation choice on their findings. The fact that the ABCD study has
nly released data extracted from a single parcellation makes clear that
he assumption in the field is that parcellation selection does not mean-
ngfully impact results. Given our findings, that parcellation selection
an/does matter, we suggest that future releases of the ABCD resting-
tate data include data extracted from additional parcellation schemes. 

. Conclusion 

We examined a series of assumptions made when a priori brain par-
ellation schemes are used to identify the canonical functional net-
orks and examine individual differences in functional connectivity.
13 
e found that the networks of interest were equally well recovered
n data extracted using a series of eight parcellations, with the excep-
ion of NeuroSynth. Furthermore, the networks of interest were equally
ell represented in pediatric data as in adults. However, within-network

unctional connectivity showed notable variability and poor consistency
cross the parcellations examined for each of the four networks. Further-
ore, parcellation selection meaningfully impacted the magnitude and

ignificance of associations between functional connectivity and age,
overty, and cognitive function. Our findings suggest that work that
epends on a priori parcellations for network identification may ben-
fit from the use of multiple schemes to confirm the robustness and
eneralizability of results. Furthermore, researchers looking to gain in-
ight into functional networks my benefit from employing more nu-
nced network identification approaches such as using densely-sampled
ndividual data to produce individual-derived network parcellations. In-
eed, recent work examining idiosyncratic network topography, as op-
osed to within-network connectivity, has illustrated meaningful indi-
idual differences in topography associated with cognition and behavior
 Bijsterbosch et al., 2018 ; Kong et al., 2019 ). A transition towards pre-
ision neuroscience in cognitive work in general, and in developmental
nd clinical work specifically, is likely to improve the characterization
f functional brain organization, and links with cognition and behav-
or, in a way that is unavailable when methods are confined to group
veraged approaches. 
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