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. Introduction 

Large consortia, such as Enhancing Neuro Imaging Genetics through

eta-Analysis (ENIGMA) ( Thompson et al., 2020 ), Cohorts for Heart

nd Aging Research in Genomic Epidemiology (CHARGE) ( Hofer et al.,

020 ), and others have aggregated neuroimaging data acquired on

any different scanners and recruited subjects at many different sites

o conduct meta- and mega-analyses. By applying standardized analy-

is pipelines to extremely large datasets of thousands or tens of thou-

ands of samples, consortia improve reliability, enhance reproducibility

f results, amass sufficient statistical power to detect relatively small ef-

ect sizes, and support the ability to divide samples while retaining the

ower to delineate subsample (e.g., male vs female or young vs old) and

nteraction effects. The diverse ethnic, racial, geographic, and clinical

emography of consortium data has provided results that are more rep-

esentative of the wider population while also permitting exploration

f clinical and neurobiological subtypes of neuropsychiatric disorders

 Dennis et al., 2022 ; Thompson et al., 2020 ). Neuroimaging results gen-

rated by consortia are more robust and reproducible than studies that

re generated by a single laboratory ( Koshiyama et al., 2022 ), provided

hat consortia apply uniform methods to data originating from multiple

ites and scanners. 

However, several challenges are posed by the analysis of consortium

ata. A major concern of consortium-generated results is bias introduced

y site-specific acquisition protocols and MRI scanners that may inter-

ct with site-specific demographic and clinical profiles ( Radua et al.,

020 ).The challenge of post hoc combination of datasets stems partly

rom a lack of a priori harmonization of MRI acquisition sequences.

rospective data collection by consortia such as NCANDA ( Brown et al.,

015 ), ABCD ( Volkow et al., 2018 ), TRACK-TBI ( Hicks et al., 2013 ), and

thers have prescribed harmonized acquisition parameters at study out-

et with the expectation of superior performance and obviating the need

or post-acquisition harmonization. However, even prospective stan-

ardization and prescription of acquisition parameters results in signif-

cant variance attributed to sites for relatively short scan duration (e.g.,

 min) that can be reduced significantly by increasing scan duration

e.g., 25 min) ( Noble et al., 2017 ). It remains unclear whether further

ost hoc harmonization of these datasets may improve sensitivity and

ower of analyses. 

Various methods to harmonize neuroimaging data across sites are

aining acceptance and will become commonplace. However, there is

ittle empirical evidence to support the use of a single method due to the
3 
 aggregated from multiple sites may be biased by site-specific profiles in par-

al characteristics, as well as MRI acquisition protocols and scanning platforms.

different harmonization methods on results obtained from analyses of cortical

effects model (LME) that models site-specific random intercepts (LME INT ), (2)

c random intercepts and age-related random slopes (LME INT + SLP ), (3) ComBat,

ed additive model (ComBat-GAM). Our test case for comparing harmonization

ata aggregated from 29 sites, which included 1,340 cases with posttraumatic

 years old) and 2,057 trauma-exposed controls without PTSD (6.3–85.2 years

 the other data harmonization methods, data processed with ComBat-GAM was

 significant case-control differences ( X 2 (3) = 63.704, p < 0.001) as well as case-

 cortical thinning ( X 2 (3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM

tecting sex differences ( X 2 (3) = 9.114, p = 0.028) in regional cortical thickness.

r estimates of age-related declines in cortical thickness (corrected p-values <

-related cortical thickness reduction (corrected p-values < 0.001 ), weaker esti-

cortical thickness in cases than controls (corrected p-values < 0.001 ), stronger

duction in females than males (corrected p-values < 0.001 ), and stronger esti-

tion in females relative to males in cases than controls (corrected p-values <

se of ComBat-GAM to minimize confounds and increase statistical power when

r effects, and the use of either ComBat or ComBat-GAM for harmonizing data

ack of formal comparisons of available methods. In this study, we com-

ared four harmonization methods. First, we tested linear mixed-effects

odeling (LME), also known as the mixed-effects mega-analysis (ME-

ega) ( Radua et al., 2020 ), with site as a random intercept (LME INT )

o model the intercept location effects of site on brain measures. Sec-

nd, we tested LME with both random intercept and age-related ran-

om slope for the site covariate (LME INT + SLP ). Third, we used Com-

at, a method originally developed to minimize batch effects present

n data originating from multiple gene arrays ( Johnson et al., 2007 ),

nd later adapted for neuroimaging data. ComBat is designed to remove

ite-associated differences while preserving variation due to biologically

elevant variables such as age, sex, and diagnosis ( Fortin et al., 2018 ).

omBat has been widely used to harmonize neuroimaging data includ-

ng cortical thickness ( Fortin et al., 2018 ), surface area, subcortical vol-

mes ( Radua et al., 2020 ), diffusion tensor imaging ( Fortin et al., 2017 ;

atton et al., 2020 ), and resting-state functional connectivity ( Yu et al.,

018 ). Radua et al. (2020) reported that ComBat and LME INT produced

imilar results when harmonizing cortical thickness, surface area, and

ubcortical volumes, while ComBat harmonization led to slightly higher

tatistical significance when performing between-group comparisons,

n a multisite imaging study of schizophrenia. The fourth method, by

omponio et al. (2020) , improves on ComBat by modeling non-linear

ffects of age with a generalized additive model (GAM). ComBat-GAM

llows for varied distributions of scale (multiplicative, or variance) and

ocation (additive, or mean) effects, respectively. 

ComBat-GAM was designed to capture age-related non-linearities

cross the lifespan by fitting a GAM with a penalized nonlinear term.

omponio et al. (2020) examined cortical and subcortical gray matter

olumes without harmonization, harmonized by ComBat, and harmo-

ized by ComBat-GAM in a large sample of 10,477 healthy subjects ag-

regated from 18 sites who ranged in age from 3 to 96 years. They re-

orted that gray matter volumes harmonized by ComBat-GAM achieved

he best performance in an age prediction task that minimized the dif-

erence between actual age and predicted age. They also found that

omBat-GAM, compared to other approaches, consistently led to im-

roved prediction accuracy for each dataset in a leave-one-site-out val-

dation experiment. However, Pomponio et al. (2020) only investigated

ata from healthy participants, which did not involve case-control com-

arisons, nor formal comparisons to LME methods. 

Consequently, the goals of the present study were to investigate (1)

he performance of ComBat-GAM for comparing clinical cases to con-

rols, (2) how performance is influenced by age, and (3) how well per-
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ormance characteristics compare to LME INT , LME INT + SLP , and ComBat.

lthough the random-effects meta-analysis (RE-Meta) has been widely

sed by ENIGMA projects ( Zugman et al., 2022 ), we did not include

E-Meta in this study because several studies showed that LME and

omBat produce results with greater statistical power than RE-Meta

 Boedhoe et al., 2017 ; Favre et al., 2019 ; Radua et al., 2020 ; van Rooij

t al., 2018 ). The increase in power is based on the premise that the site

ffect being removed represents random noise, and its removal leads

o larger effect sizes and greater efficiency requiring fewer subjects to

eject the null hypothesis at a pre-specified power. 

An important caveat is that performance was measured by the num-

er of brain regions with significant case-control differences. We recog-

ize that neither the method with the greatest number of regions reach-

ng significance nor the method that maximizes the magnitude (abso-

ute value) of regression coefficients reflects the true underlying corti-

al thickness - the so-called ground truth. However, harmonization can

ove the values further from the ground truth and still be useful. The

ain aim of harmonization is to make uncalibrated measurements more

omparable to each other. It is possible that measurable differences be-

ween cases and controls are potentially masked by scanner bias and

ffective harmonization should increase the difference between the dis-

ribution of cases and controls. Therefore, it is advisable to count the

umber of regions that are statistically significant after implementing

armonization. Nonetheless, there is a risk that harmonization may in-

roduce variability that was not present in the original data. 

Data aggregated from 29 sites served as our test case for compar-

ng harmonization methods. Subjects’ data was grouped into cases with

TSD ( N = 1340) and trauma-exposed controls without PTSD ( N = 2057).

TSD is associated with anatomical and functional alterations in widely

istributed regions of the brain ( Dennis et al., 2022 ; Logue et al., 2018 ;

ang et al., 2021 ). Military service members with PTSD and comor-

id mild traumatic brain injury (mTBI) experience faster age-associated

ecline in cortical thickness than controls ( Santhanam et al., 2019 ;

avjani et al., 2017 ). We hypothesized significant case-control differ-

nces in cortical thickness and age-related cortical thinning would be

etectable in more brain regions by utilizing ComBat-GAM relative to

ME INT , LME INT + SLP , and ComBat. 

. Methods 

.1. Participants 

Data were obtained for secondary analysis from the ENIGMA-PGC

TSD Working Group. The dataset originated from 29 sites located on

ve continents (PTSD, N = 1340; Trauma-Exposed Controls, N = 2057)

rom a broad age group (6.2–85.2 years old). Three sites were the source

f all children and adolescents (Duke De Bellis 9.9 ± 2.5; Leiden Univer-

ity 16.0 ± 1.9; University of Washington 13.2 ± 2.9) and one site was

he source of older participants (ADNI-DoD 67.9 ± 3.6), with minimal

verlap between the 3 sites with participants under 20 years and sites

ith participants over 20 years. Only one site contributed both chil-

ren (Duke University-De Bellis) and adults (Duke University-Morey).

emographic information is summarized in Table 1 . Clinical measures

nd assessment of PTSD are explained in the Supplementary Table S1 .

he scanner information is listed in Supplementary Table S2 . All study

ites obtained approval from local institutional review boards or ethics

ommittees. All participants provided written informed consent. Data is

vailable upon request from the corresponding author. 

.2. Imaging data preprocessing 

Anatomical brain images were preprocessed at Duke University

hrough a standardized neuroimaging and QC pipeline developed by the

NIGMA Consortium ( http://enigma.ini.usc.edu/protocols/imaging-

rotocols/ ) ( Logue et al., 2018 ). Cortical thickness mea-

urements were generated using the FreeSurfer software
4 
 https://surfer.nmr.mgh.harvard.edu ) based on the Destrieux atlas

 Destrieux et al., 2010 ) that contains 74 regions per hemisphere. All

ites used FreeSurfer 5.3 for parcellation except ADNI-DoD, Minneapolis

A, and the Waco VA, which used FreeSurfer 6.0, as well as Amsterdam

edical Center and University of South Dakota, which used FreeSurfer

.1.1 ( Supplementary Table S2 ). Briefly, white matter surfaces were

eformed toward the gray matter boundary at each surface vertex. Cor-

ical thickness was calculated based on the average distance between

he parcellated portions of white and pial surfaces within each region

er participant. In each region, any missing value was replaced by the

ean cortical thickness averaged across same group of participants

either PTSD or trauma-exposed controls) at the same site 

.3. ComBat harmonization 

ComBat removes the effects of site while preserving inherent bi-

logical variance in the data ( Fortin et al., 2018 ). In the present

tudy, PTSD diagnosis, age, and sex were designated as biological

ariables. The ComBat approach was implemented using R scripts

 https://github.com/Jfortin1/ComBatHarmonization ) running on RStu-

io (ver. 1.3.1073) and R (ver. 4.0.2). Unlike implementations of LME

odels that merge data harmonization and statistical analyses, ComBat

nd ComBat-GAM perform only harmonization and make harmonized

ata available to the user. 

.4. ComBat-GAM harmonization 

PTSD diagnosis, age, and sex were designated as biological

ariables, and age was specified as the only smooth term in

he model. We employed the default setting so that the empir-

cal Bayes estimates were used for site effects, and there were

o custom boundaries for the smoothing terms. The ComBat-

AM approach was implemented using Python (ver. 3.8.5) scripts

 https://github.com/rpomponio/neuroHarmonize ). 

.5. Distribution of non-harmonized, ComBat harmonized, and 

omBat-GAM harmonized data 

Pairwise comparisons of non-harmonized, ComBat harmonized, and

omBat-GAM harmonized data using the function pairs() (from the R

ackage emmeans ) were applied to the absolute differences between the

ite-specific mean values and the mean value averaged across sites. The

bsolute, but not signed values, of the differences were investigated in

rder to test whether ComBat and ComBat-GAM harmonization led to

ore consistent distributions Specifically, smaller differences between

he site-specific mean values and the mean across sites). The pairwise

omparisons were also applied to site-specific standard deviations for

ortical thickness across cortical regions. The p -values were adjusted

sing Bonferroni correction for three pairwise comparisons (i.e., ComBat

s. non-harmonized, ComBat-GAM vs. non-harmonized, ComBat-GAM

s. ComBat). The effects of harmonization by LME models cannot be

bserved directly because data harmonization and statistical analyses

re inseparable in LME methods. 

.6. Statistical models 

In all models, we included sex, age, and PTSD diagnosis as fixed

actors to estimate their effects on regional cortical thickness, and as co-

ariates for testing interaction effects of interest. Either age by diagnosis

nteraction, or sex by diagnosis interaction was included in the models

s a fixed factor when the corresponding interaction was of interest. The

upplementary materials report on the influence of age 2 as a fixed-factor

o estimate effects on regional cortical thickness, and for testing inter-

ction effects. Linear modeling was used to analyze data harmonized by

omBat and data harmonized by ComBat-GAM. Cortical thickness data

ithout harmonization was entered into the LME models. The LME 
INT 

http://enigma.ini.usc.edu/protocols/imaging-protocols/
https://surfer.nmr.mgh.harvard.edu
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Table 1 

Demographic information per study site. 

Control PTSD 

SiteName N Female: Male Age (yrs: mean ± SD) N Female: Male Age (yrs: mean ± SD) 

ADNIDoD a 105 1:104 70.0 ± 5.2 80 0:80 67.9 ± 3.6 

Amsterdam Medical Center 37 18:19 39.6 ± 10.0 38 17:21 40.4 ± 9.9 

Columbia University 35 23:12 35.2 ± 10.6 53 34:19 36.3 ± 9.3 

Duke University-De Bellis 86 47:39 10.5 ± 2.6 29 15:14 9.9 ± 2.5 

Duke University-Morey 270 59:211 39.7 ± 10.1 114 16:98 40.7 ± 9.9 

Ghent University 59 59:0 37.7 ± 12.3 8 8:0 32.6 ± 10.3 

University of Groningen - - - 40 40:0 38.2 ± 9.7 

U.W. Madison-Grupe 38 1:37 30.7 ± 6.6 19 3:16 30.4 ± 6.2 

Emory University-GTP 108 103:5 40.8 ± 12.2 66 66:0 37.0 ± 12.3 

INTRuST b 254 121:133 34.8 ± 13.0 104 23:81 38.6 ± 10.6 

U.W. Milwaukee-Larson 45 23:22 35.5 ± 11.4 19 10:9 29.2 ± 8.6 

Leiden University 30 26:4 14.7 ± 1.6 22 19:3 16.0 ± 1.9 

University of Mannheim - - - 48 48:0 35.9 ± 11.8 

Harvard University-McLean 13 13:0 35.6 ± 10.5 39 39:0 38.2 ± 12.9 

Minneapolis V.A.-Disner 95 6:89 33.2 ± 8.6 74 2:72 32.0 ± 7.6 

University of Münster 26 21:5 26.5 ± 7.4 21 21:0 27.4 ± 7.0 

University of Illinois-Chicago 20 0:20 34.0 ± 8.9 23 0:23 31.3 ± 9.3 

Harvard University-Rosso 85 44:41 33.5 ± 9.3 20 13:7 35.3 ± 7.9 

University of South Dakota 44 7:37 29.9 ± 6.9 78 17:61 28.8 ± 7.1 

Stanford University 1 0:1 61.0 ± 0 68 40:28 36.9 ± 10.3 

Stellenbosch University 138 100:38 42.9 ± 14.3 120 87:33 39.4 ± 11.0 

University of Toledo 61 27:34 34.3 ± 11.6 15 7:8 40.9 ± 9.5 

UCAS-Beijing 36 17:19 48.2 ± 6.8 34 21:13 51.0 ± 6.7 

University of Cape Town 55 55:0 28.7 ± 6.4 7 7:0 30.5 ± 7.2 

University of Sydney-Westmead 107 71:36 40.4 ± 13.2 48 25:23 39.0 ± 11.6 

University of Washington 202 105:97 14.1 ± 3.0 53 25:28 13.2 ± 2.9 

Waco V.A. 25 4:21 40.7 ± 11.6 41 6:35 41.0 ± 11.0 

University of New Haven 34 3:31 34.2 ± 9.8 37 5:32 34.8 ± 9.2 

Yale University 48 8:40 29.4 ± 8.2 22 3:19 31.8 ± 6.9 

a Alzheimer’s Disease Neuroimaging Initiative - Department of Defense. 
b Injury & Traumatic Stress Clinical Consortium. 

m  

c  

a  

c  

m  

(  

w  

e  

l  

T  

(

 

e  

o  

s  

s  

w  

a  

s  

m  

R  

m  

h

3

 

s  

a  

i  

d  

a

3

C

 

i  

r  

r  

r  

v  

v  

g  

d  

e  

t  

v  

g

 

d  

v  

v  

g

3

 

B  

G  

2  

f

 

n  

t  

c  
odels employed study site as a random factor to model random inter-

epts. The LME INT + SLP modeled both the site-specific random intercepts

nd age-related random slopes to reflect different age-related slopes in

ortical thickness across sites. Bonferroni correction was employed for

ultiple testing of 148 cortical regions with a corrected 𝛼 = 0.0003

0.05/148). The functions lm() and lmer() (from the R package lme4)

ere used to calculate the unstandardized regression coefficients for lin-

al models and the random effects models, respectively. The R package

merTest was utilized to extract the statistical significance of models.

he fitted curves in this manuscript were made using default settings

i.e. loess) of the R ggplot2 function geom_smooth() . 

The number of regions with significant findings and the magnitude of

ffect size was compared separately between the 4 harmonization meth-

ds. A chi-squared test based on the function chisq.test() (from the native

tats package in R) was used to compare the number of cortical regions

howing significant effects. The region-specific regression coefficients

ere compared using repeated-measures ANOVA based on the function

ov_ez() (from the R package afex ). If the omnibus ANOVA results were

tatistically significant, then post-hoc pairwise comparisons of the 4 har-

onization methods were conducted using the function pairs() (from the

 package emmeans ). The p -values were adjusted using the Bonferroni

ethod for the 6 pairwise comparisons made with the outputs of the 4

armonization methods. 

. Results 

As shown in Fig. 1 and the interactive plot at https://4n8ygg-delin-

un.shinyapps.io/SDL_Shiny/ , data distribution and age-related slops

re largely modulated by site. Visual evidence of a non-linear age effect

n participants under 20 years originate from 3 sites (Duke-De Bellis; Lei-

en University; University of Washington). Therefore, it is paramount

nd meaningful to harmonize the data by removing site effects. 
5 
.1. Distribution of non-harmonized, ComBat harmonized, and 

omBat-GAM harmonized data 

Distributions of non-harmonized and harmonized data are shown

n Fig. 2 . Relative to non-harmonized data, ComBat (controls:

ange of t-values : [ − 10.120, − 3.225], p-values : [ < 0.001,0.006] cor-

ected; PTSD: t-values : [ − 9.653, − 3.475], p-values : [ < 0.001,0.003] cor-

ected; across regions) and ComBat-GAM harmonized data (controls: t-

alues : [ − 10.046, − 1.856], p-values : [ < 0.001,0.207] corrected; PTSD: t-

alues : [ − 9.590, − 2.284], p-values : [ < 0.001,0.078] corrected; across re-

ions) resulted in smaller differences overall between the site-specific

ata and the mean across sites. There was no significant differ-

nce between ComBat and ComBat-GAM harmonized data (controls:

-values : [ − 2.373,0.075], p-values : [0.064,0.999] corrected; PTSD: t-

alues : [ − 2.183,0.066], p-values : [0.100,0.999] corrected; across re-

ions). 

There was no significant difference in the site-specific standard

eviations between all data-pairings across all regions (controls: t-

alues : [ − 0.961,1.995], p-values : [0.154,0.999] corrected; PTSD: t-

alues : [ − 1.174,2.354], p-values : [0.066,0.999] corrected; across re-

ions). 

.2. Main effect of age 

As shown in Fig. 3 , linear age-related trends are evident with Com-

at harmonization, whereas non-linear trends are evident with ComBat-

AM harmonization with a dramatic decline in cortical thickness before

0, and a relatively slow decline after 20 years. This pattern holds true

or both PTSD and control groups. 

As shown in Figs. 4 A and 5 , the number of regions showing a sig-

ificant main effect of age was significantly different across harmoniza-

ion methods ( X 

2 (3) = 89.658, p < 0.001). The age-related declines in

ortical thickness were detected by ComBat-GAM and ComBat in 147

https://4n8ygg-delin-sun.shinyapps.io/SDL_Shiny/
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Fig. 1. Scatter plots of mean cortical thickness averaged across regions for each study site. Data distribution and age-related linear trends are markedly different 

across sites. Mean cortical thickness averaged across regions is shown to avoid regional biases. Participants are color-coded based on study site. 

Table 2 

Percent of 148 regions showing statistical significance. 

Effects Harmonization methods Chi-squared test 

LME INT LME INT + SLP ComBat ComBat-GAM statistics p (Bonferroni corr.) 

Age 98.0 76.4 99.3 99.3 89.658 < 0.001 

Diagnosis 1.4 1.4 3.4 20.9 63.704 < 0.001 

Age x Diagnosis 0 0 0 2.7 12.082 0.007 

Sex 17.6 19.6 29.1 29.1 9.114 0.028 

Sex x Diagnosis 0 0 0 0 NA NA 

Note: LME INT , LME models site-specific random intercept. LME INT + SLP , LME models both site-specific 

random intercepts and age-related random slopes. 
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99.3%) regions, by LME INT in 145 (98.0%) regions, and by LME INT + SLP 

n 113 (76.4%) regions, see Table 2 . As shown in Table 3 , the ratio

f detection ( > 95%) indicated that the significant regions detected by

ne method was also detected by another method except for LME INT + SLP ,

hich is less efficiently ( < 80%) in replicating the findings of age effects

etected by the other methods. 

The regression coefficients were significantly different across har-

onization methods ( F (1.6, 231.8) = 207.13, p < 0.001). As shown in

ig. 4 B and Table 4 , ComBat-GAM produced stronger estimates of age-

elated declines in cortical thickness than the other methods, while the

ther three methods were not significantly different from each other. 

.3. Main effect of diagnosis 

The number of regions showing a main effect of diagnosis was sig-

ificantly different across harmonization approaches ( X 

2 (3) = 63.704,

 < 0.001). As shown in Fig. 6 A , and Table 2 , case-related reductions in

ortical thickness were found by ComBat-GAM in 31 (20.9%) regions,

y ComBat in 5 (3.4%) regions, by LME INT and by LME INT + SLP in 2

1.4%) regions. As shown in Fig. 7 , the regions discovered by ComBat-

AM include those within the salience network (SN; bilateral insula re-
6 
ions), executive control network (ECN; bilateral intraparietal sulcus

nd supramarginal gyri), default mode network (DMN; left ventrome-

ial prefrontal cortex, and bilateral precuneus), and bilateral superior

nd inferior temporal gyri and sulci, which are consistent with previous

eports ( Shalev et al., 2017 ). As shown in Table 3 , the significant regions

etected by LME INT were also detected by ComBat, and the significant

egions detected by LME INT + SLP were also detected by ComBat-GAM,

hile the opposite was not true (ratio of detection < = 40%). 

Regression coefficients were different across harmonization meth-

ds ( F (1.4, 205.1) = 335.79, p < 0.001). As shown in Fig. 6 B and

able 4 , ComBat-GAM produced stronger estimates of case-related cor-

ical thickness reduction as well as weaker estimates of case-related cor-

ical thickness increase than the other three methods, and ComBat pro-

uced stronger estimates of case-related cortical thickness reduction as

ell as weaker estimates of case-related cortical thickness increase than

he two LME methods. 

.4. Age by diagnosis interaction 

As shown in Fig. 8 A , significant age by diagnosis interactions were

etected by ComBat-GAM in 4 (2.7%) regions, while no significant in-
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Fig. 2. Site-specific cortical thickness averaged across regions. Non-harmonized (A), ComBat harmonized (B), and ComBat-GAM harmonized (C) data in participants 

with PTSD. Non-harmonized (D), ComBat harmonized (E), and ComBat-GAM harmonized (F) data in trauma-exposed controls. The order of sites in the figure is 

consistent with the order of site names in the legend from top to bottom to facilitate with interpretation. Compared to non-harmonized data, ComBat and ComBat- 

GAM lead to smaller differences between site-specific data and the mean values averaged across sites, and they do not change the site-specific standard deviations 

for cortical thickness. The effects of harmonization by LME models cannot be shown here because data harmonization and statistical analyses are inseparable in LME 

methods. Mean cortical thickness averaged across regions is shown to minimize regional biases. The boxplots were made using the default settings of the R ggplot2 

function geom_boxplot() . The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the 

hinge to the largest value no further than 1.5 ∗ IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The 

lower whisker extends from the hinge to the smallest value at most 1.5 ∗ IQR of the hinge. Data beyond the end of the whiskers are called "outlying" points and are 

plotted individually. 
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eractions were detected by ComBat, LME INT , and LME INT + SLP . ComBat-

AM outperformed the other methods in detecting this interaction ef-

ect ( X 

2 (3) = 12.082, p = 0.007), see Table 2 . As shown in Fig. 9 ,

ge-related declines in cortical thickness were slower in cases than con-

rols for 4 regions: right posterior-dorsal part of the cingulate gyrus,

ight marginal branch of the cingulate sulcus, right inferior temporal

yrus, and right fusiform gyrus. The linear ( Fig. S1 ) and non-linear

 Fig. S2 ) fits of the age-related distributions of cortical thickness harmo-

ized by ComBat-GAM in these regions are shown in the supplementary

aterials. 

Regression coefficients differed across harmonization methods

 F (1.3, 197.3) = 246.41, p < 0.001). As shown in Fig. 8 B and Table 4 ,

omBat-GAM compared to the other methods produced weaker esti-

ates of age-related declines in cortical thickness in cases than con-

rols, and both ComBat and LME INT compared to LME INT + SLP produced

eaker estimates of age-related declines in cortical thickness in cases

han controls. 

.5. Main effect of sex 

The number of regions showing a significant main effect of sex was

ignificantly different across harmonization methods ( X 

2 (3) = 9.114,

 = 0.028). As shown in Fig. 10 A and Table 2 , the differences between

ales and females in cortical thickness were detected by ComBat-GAM

nd by ComBat in 43 (29.1%) regions, by LME in 26 (17.6%) regions,
INT 

7 
nd by LME INT + SLP in 29 (19.6%) regions. As shown in Fig. 11 , The

nalyses based on ComBat-GAM harmonization showed that females

ad greater cortical thickness than males in bilateral precentral and

ostcentral regions, bilateral middle cingulate cortex, bilateral superior

rontal gyri, bilateral angular gyri, bilateral medial occipito-temporal

ulci and lingual sulci, left frontal pole, left superior temporal sulci,

nd right parahippocampal gyrus. By contrast, males had greater cor-

ical thickness than females in bilateral inferior temporal regions, left

ectus, left planum polare of the superior temporal gyrus, left vertical

amus of the anterior segment of the lateral sulcus, bilateral calcarine

ulci, left insula, left inferior and middle frontal sulci, left orbital sulci,

ight ventral posterior cingulate cortex, right temporal pole. As shown

n Table 3 , most regions showing statistical significance detected by

he LME methods were also detected by ComBat and ComBat-GAM (ra-

io of detection > 90%), and the opposite is not true (ratio of detection

 = 70%). 

Regression coefficients were different across harmonization methods

 F (1.8, 259.6) = 123.25, p < 0.001). As shown in Fig. 10 B and Table 4 ,

omBat-GAM compared to the other methods produced stronger esti-

ates of cortical thickness reduction in females than males as well as

eaker estimates of cortical thickness increase in females than males.

omBat compared to LME methods as well as LME INT compared to

ME INT + SLP produced stronger estimates of cortical thickness reduction

n females than males as well as weaker estimates of cortical thickness

ncrease in females than males. 
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Fig. 3. Scatter plots and non-linear trends of mean cortical thickness averaged across regions. Non-harmonized (A), ComBat harmonized (B), and ComBat-GAM 

harmonized (C) data in participants with PTSD. Non-harmonized (D), ComBat harmonized (E), and ComBat-GAM harmonized (F) data in controls. Both ComBat 

and ComBat-GAM reduce variances. ComBat-GAM is superior to ComBat at capturing the age-related non-linear trends in cortical thickness. Mean cortical thickness 

averaged across regions is shown to avoid biases by particular regions. The fit curves were made based on the default settings (i.e. loess ) of the R ggplot2 function 

geom_smooth() . The shaded regions represent the 95% confidence intervals. 
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.6. Sex by diagnosis interaction 

As shown in Fig. 12 A , no significant sex by diagnosis interactions

ere found using data from any of the four methods. Regression co-

fficients were significantly different across harmonization approaches

 F (1.2, 178.3) = 12.40, p < 0.001). As shown in Fig. 12 B and Table 4 ,

omBat-GAM compared to the other methods produced stronger esti-

ates of cortical thickness reduction in females relative to males in cases

han controls, as well as weaker estimates of cortical thickness increase

n females relative to males in cases than controls. ComBat compared to

he LME INT + SLP methods produced stronger estimates of cortical thick-

ess increase in females compared to males in cases than controls, as

ell as weaker estimates of cortical thickness reduction in females com-

ared to males in cases than controls. 

.7. Results after removing sites with children, adolescents, and older 

articipants 

To test whether our findings were influenced by the data from chil-

ren, adolescents, and very old participants, we re-analyzed the data
8 
fter removing 3 sites with participants under 20 years and one site

ith older participants ( ∼70 years). ComBat-GAM, ComBat, and LME INT 

etected more regions with age-related cortical thinning compared to

ME INT + SLP . Both ComBat and ComBat-GAM compared to two LME

ethods detected more regions with sex-related cortical thickness differ-

nces. There was no significant difference among harmonization meth-

ds in detecting other effects. More details see Supplementary results

ection, and Table S4, S5, and S6 . 

. Discussion 

We compared the performance of four harmonization methods by

pplying them to cortical thickness data in participants grouped into

linical cases and controls from 29 different sites. The four harmoniza-

ion methods included LME INT , LME INT + SLP , ComBat, and ComBat-GAM.

e acknowledge that the number of regions reaching significance by

ny method does not necessarily reflect the ground truth , but the princi-

le goal of harmonization is to convert uncalibrated measurements from

ultiple sources to be more comparable to each other. As summarized in

able 2 , ComBat-GAM, ComBat, and LME detected more regions with
INT 
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Fig. 4. Main effect of age. (A) Negative log-transformed statistical significance, i.e. –log 10 (p). All four methods can detect multiple regions showing significance. The 

dashed and solid vertical lines represent thresholds p = 0.05 (uncorrected) and p = 0.05 (Bonferroni corrected), respectively. (B) Magnitude of regression coefficients. 

ComBat-GAM compared to the other methods provided stronger estimation of age-related cortical thickness reduction. The ordering of regions from top to bottom in 

both (A) and (B) is by ascending order of regression coefficients from cortical thickness data harmonized by ComBat-GAM. LME INT , LME models site-specific random 

intercept. LME INT + SLP , LME models both site-specific random intercepts and age-related random slopes. The fit curves were made based on the default settings (i.e. 

loess ) of the R ggplot2 function geom_smooth() . 

Fig. 5. Regions with significant main effect of age. The color bar represents the magnitude of the regression coefficient. LME INT + SLP compared to the other methods 

detected fewer regions showing significant age effect. Cooler colors represent stronger age-related declines in cortical thickness. LME INT , LME models site-specific 

random intercept. LME INT + SLP , LME models both site-specific random intercepts and age-related random slopes. 

9 
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Fig. 6. Main effect of diagnosis. (A) Negative log-transformed statistical significance, i.e. –log 10 (p). ComBat-GAM compared to the other methods detected more 

regions showing statistical significance. The dashed and solid vertical lines represent thresholds p = 0.05 (uncorrected) and p = 0.05 (Bonferroni corrected), re- 

spectively. (B) Magnitude of regression coefficients. ComBat-GAM compared to the other methods provided stronger estimation of case-related cortical thickness 

reduction as well as weaker estimation of case-related cortical thickness increase. The ordering of regions from top to bottom in both (A) and (B) is by ascending order 

of regression coefficients from cortical thickness data harmonized by ComBat-GAM. LME INT , LME models site-specific random intercept. LME INT + SLP , LME models 

both site-specific random intercepts and age-related random slopes. The fit curves were made based on the default settings (i.e. loess ) of the R ggplot2 function 

geom_smooth() . 

Fig. 7. Regions with a significant main effect of diagnosis. ComBat-GAM compared to the other methods detected more regions showing significant case-control 

difference. The color bar represents the magnitude of the regression coefficient. Cooler colors mean lower cortical thickness in PTSD than controls. LME INT , LME 

models site-specific random intercept. LME INT + SLP , LME models both site-specific random intercepts and age-related random slopes. 

10 
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Fig. 8. Interaction of age and diagnosis. (A) Negative log-transformed statistical significance, i.e. –log 10 (p). Only ComBat-GAM detected four regions showing statisti- 

cal significance after correction. The dashed and solid vertical lines represent thresholds p = 0.05 (uncorrected) and p = 0.05 (Bonferroni corrected), respectively. (B) 

Magnitude of regression coefficients. ComBat-GAM compared to the other methods produced weaker estimates of age-related declines in cortical thickness in cases 

than controls. The ordering of regions from top to bottom in both (A) and (B) is by ascending order of regression coefficients from cortical thickness data harmonized 

by ComBat-GAM. LME INT , LME models site-specific random intercept. LME INT + SLP , LME models both site-specific random intercepts and age-related random slopes. 

The fit curves were made based on the default settings (i.e. loess ) of the R ggplot2 function geom_smooth() . 

Fig. 9. Regions show significant age by diagnosis interaction. Only ComBat-GAM detected four regions showing statistical significance. The color bar represents the 

magnitude of the regression coefficient. Warmer colors mean that age-related declines in cortical thickness are smaller in PTSD than controls. 

11 
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Fig. 10. Main effect of sex. (A) Negative log-transformed statistical significance, i.e. –log 10 (p). The dashed and solid vertical lines represent thresholds p = 0.05 

(uncorrected) and p = 0.05 (Bonferroni corrected), respectively. (B) Magnitude of regression coefficients. ComBat-GAM compared to the other methods produced 

stronger estimates of cortical thickness reduction in females than males as well as weaker estimates of cortical thickness increase in females than males. The ordering 

of regions from top to bottom in both (A) and (C) is by ascending order of regression coefficients from cortical thickness data harmonized by ComBat-GAM. LME INT , 

LME models site-specific random intercept. LME INT + SLP , LME models both site-specific random intercepts and age-related random slopes. The fit curves were made 

based on the default settings (i.e. loess ) of the R ggplot2 function geom_smooth() . 

Table 3 

Ratio of detection (%) based on number of regions that met Bonferroni- 

corrected significance. 

LME INT LME INT + SLP ComBat ComBat-GAM 

Effect of Age 

LME INT – 77.9 100 100 

LME INT + SLP 100 – 100 100 

ComBat 98.6 76.9 – 100 

ComBat-GAM 98.6 76.9 100 –

Effect of Diagnosis 

LME INT – 50 100 50 

LME INT + SLP 50 – 50 100 

ComBat 40 20 – 80 

ComBat-GAM 3.2 6.5 12.9 –

Age by Diagnosis Interaction 

LME INT – NA NA NA 

LME INT + SLP NA – NA NA 

ComBat NA NA – NA 

ComBat-GAM 0 0 0 –

Effect of Sex 

LME INT – 100 100 100 

LME INT + SLP 89.7 – 100 93.1 

ComBat 60.5 67.4 – 93 

ComBat-GAM 60.5 62.8 93 –

Sex by Diagnosis Interaction 

LME INT – NA NA NA 

LME INT + SLP NA – NA NA 

ComBat NA NA – NA 

ComBat-GAM NA NA NA –

Note: The ratio of detection is defined as the proportion of cortical regions 

showing statistical significance that were identified by the methods in rows 

were also detected by the methods in columns. Higher ratio of detection 

means that the method in columns was as effective as the method in rows 

at detecting significance. NA indicates not available because no significant 

finding was detected by the method in rows. 
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12 
ge-related cortical thinning compared to LME INT + SLP ( Figs. 4 A and 5 ).

onsistent with our a priori hypothesis, ComBat-GAM harmonization

ncovered more regions with significant case-related reductions in cor-

ical thickness ( Figs. 6 A and 7 ), and more regions displaying slower

ates of age-related cortical thinning in cases than controls compared to

he other methods ( Figs. 8 A and 9 ). ComBat and ComBat-GAM outper-

ormed LME methods in detecting sex-related differences ( Figs. 10 A and

1 ), but not sex by diagnosis interactions ( Fig. 12 A ). As summarized in

able 3 , most regions showing significant effects of age and sex detected

y LME methods were also detected by ComBat and ComBat-GAM, while

he opposite was not true, except that LME INT performed comparably to

omBat and ComBat-GAM for the main effect of age. Regression coeffi-

ients ( Table 4 ) showed that compared to other methods, ComBat-GAM

roduced stronger estimates of age-related declines in cortical thickness

 Fig. 4 B ), stronger estimates of case-related cortical thickness reduction

 Fig. 6 B ), weaker estimates of age-related declines in cortical thickness

n cases than controls ( Fig. 8 B ), stronger estimates of cortical thickness

eduction in females than males as well as weaker estimates of cortical

hickness increase in females than males ( Fig. 10 B ), stronger estimates

f cortical thickness reduction in females relative to males in cases than

n controls, and weaker estimates of cortical thickness increase in fe-

ales relative to males in cases than in controls ( Fig. 12 B ). 

ComBat models the expected values of the imaging features as

 linear combination of the biological variables and the site effects

hose error term is modulated by additional site-specific scaling fac-

ors ( Fortin et al., 2018 ). It also uses empirical Bayes to improve the

stimation of the model parameters in studies with small sample size.

adua et al. (2020) used cortical thickness, surface area, and subcortical

olume data in cases and controls from ENIGMA-Schizophrenia to com-

are ComBat to random-effects meta-analysis and random-effects mega-

nalysis, which we term LME INT in the present study. They reported that

omBat delivered more results that were statistically significant than
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Fig. 11. Regions with a significant main effect of sex. The color bar represents the magnitude of the regression coefficient. Cooler (warmer) colors indicate lower 

(higher) cortical thickness in females compared to males. 

Fig. 12. Sex by diagnosis interaction. (A) Negative log-transformed statistical significance, i.e. –log 10 (p). The dashed and solid vertical lines represent thresholds 

p = 0.05 (uncorrected) and p = 0.05 (Bonferroni corrected), respectively. None of the four methods detected significant regions. (B) The magnitude of regression 

coefficients. ComBat-GAM compared to the other methods produced stronger estimates of cortical thickness reduction in females relative to males in cases than 

controls, as well as weaker estimates of cortical thickness increase in females relative to males in cases than controls. The ordering of regions from top to bottom in 

both (A) and (B) is by ascending order of regression coefficients from cortical thickness data harmonized ComBat-GAM. LME INT , LME models site-specific random 

intercept. LME INT + SLP , LME models both site-specific random intercepts and age-related random slopes. The fit curves were made based on the default settings (i.e. 

loess ) of the R ggplot2 function geom_smooth() . 

13 



D. Sun, G. Rakesh, C.C. Haswell et al. NeuroImage 261 (2022) 119509 

Table 4 

Comparisons of regression coefficients. 

LME INT LME INT + SLP ComBat ComBat-GAM 

Effect of Age 

LME INT – 0.6e-04 − 0.6e-04 10.8e-04 

LME INT + SLP 0.703 – − 1.2e-04 10.2e-04 

ComBat 0.677 0.125 – 11.4e-04 

ComBat-GAM < 0.001 < 0.001 < 0.001 –

Effect of Diagnosis 

LME INT – 0.4e-03 1.2e-03 6.6e-03 

LME INT + SLP 0.277 – 0.7e-03 6.2e-03 

ComBat < 0.001 0.011 – 5.4e-03 

ComBat-GAM < 0.001 < 0.001 < 0.001 –

Age by Diagnosis Interaction 

LME INT – 3.8e-05 − 0.3e-05 − 44.4e-05 

LME INT + SLP 0.262 – − 4.1e-05 − 48.2e-05 

ComBat 0.999 0.197 – − 44.1e-05 

ComBat-GAM < 0.001 < 0.001 < 0.001 –

Effect of Sex 

LME INT – − 1.8e-03 0.6e-03 1.6e-03 

LME INT + SLP < 0.001 – 2.4e-03 3.4e-03 

ComBat 0.012 < 0.001 – 1.1e-03 

ComBat-GAM < 0.001 < 0.001 < 0.001 –

Sex by Diagnosis Interaction 

LME INT – 6.0e-04 − 0.4e-04 12.0e-04 

LME INT + SLP 0.056 – − 6.3e-04 6.1e-04 

ComBat 0.999 0.037 – 12.4e-04 

ComBat-GAM < 0.001 0.049 < 0.001 –

Note: The upper triangle of the matrix are the differences between regression 

coefficients from methods in rows and columns. Higher values mean that the 

method in columns lead to more negative (i.e., weaker positive coefficients, 

or stronger negative coefficients) estimates than the method in rows. The 

lower triangle represents the corresponding p -values (Bonferroni corrected). 
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andom-effects meta-analyses, and slightly more than LME INT . However,

hey did not report results of non-linear age effects on cortical thick-

ess, which are well documented ( Frangou et al., 2022 ; Pomponio et al.,

020 ; Walhovd et al., 2017 ), nor did they report on effects of group

embership on age-related changes in cortical thickness. By contrast,

omponio et al. (2020) developed ComBat-GAM to support harmo-

ization of neuroimaging data with non-linearities related to age or

ther variables by investigating cortical and subcortical gray matter

olumes in 10,477 healthy subjects ranging in age from 3 to 96 years

ollected at 18 sites. They concluded that ComBat-GAM is superior to

omBat at predicting age based on regional volume data. However,

omponio et al. (2020) only investigated healthy participants, which

acked guidance on harmonization of data for case-control comparisons.

inally, prior studies did not report the magnitude of regression coeffi-

ients obtained from various harmonization methods, in spite of an ur-

ent plea by researchers to understand how harmonization influences

he output of statistical models run on harmonized data. 

Our study sought to fill these gaps by formally comparing regres-

ion coefficients and the number of regions showing statistically sig-

ificant results, including case-control differences in cortical thickness

cross the lifespan. As shown in Fig. 2 , ComBat and ComBat-GAM led

o smaller differences between site-specific data and the mean values

veraged across sites, and they did not change the site-specific standard

eviations for cortical thickness. These results demonstrated that both

omBat and ComBat-GAM are effective at minimizing the effects of site

ithout distorting the data distribution. Harmonization with ComBat-

AM was the most effective at detecting case-control differences as evi-

enced by significantly more regional findings as compared to other har-

onization methods. ComBat-GAM was one of the most effective meth-

ds at detecting age-effects in cortical thickness, and the only method

o uncover regions with different rates of age-related cortical thinning

n cases compared to controls. Furthermore, most of the regions show-

ng statistical significance following harmonization with other meth-

ds were also detected following ComBat-GAM harmonization. Whereas

e have no collateral information to corroborate the findings from
14 
omBat-GAM harmonization pertaining to case-control differences or

ge-dependent case-control differences, the literature offers consistent

vidence of age-related patterns of cortical thickness across the lifespan

 Frangou et al., 2022 ; Mutlu et al., 2013 ). One caveat is that motion re-

ated artifact, which is associated with lower cortical thickness measure-

ents, increases with age ( Savalia et al., 2017 ). Consequently, reduced

ortical thickness with aging may be partially artifactual. Nonetheless,

ig. 3 shows concrete evidence of erroneous harmonization by Com-

at that is handled correctly by ComBat-GAM. Our finding is corrobo-

ated by independent studies, which demonstrate that the highest cor-

ical thickness occurs in childhood and that age is negatively correlated

o cortical thickness with a steeper decline up to the third decade of

ife more gradually thereafter ( Frangou et al., 2022 ; Mutlu et al., 2013 ).

y contrast, ComBat harmonized the data along a linear pattern with

ge throughout the lifespan. Thus, ComBat-GAM harmonization may be

dvantageous, particularly for consortia studies with participants of all

ges, particularly youth and young adults. 

The performance of ComBat-GAM is attributable to its algorithm.

ME models assume that the error terms follow the same normal distri-

ution at all sites, which is rarely the case ( Radua et al., 2020 ). ComBat

vercomes this shortcoming by assuming different normal distributions

t different sites for the error terms ( Radua et al., 2020 ). ComBat-GAM

urther improves on ComBat by using a normal distribution as the prior

or the intercept and an inverse-gamma distribution as the prior for the

cale effect of the sites. It also uses generalized additive model (GAM) to

apture non-linear variations in age-related changes in cortical thickness

hile avoiding overfitting ( Pomponio et al., 2020 ). 

In our study, participants at most sites were aged 20–60 years old,

hile volunteers from three sites were mostly below 20 years old, and

articipants from one site were mostly over 70 years old. We found

hat after removing the data from the four sites with either very young

r very old participants, ComBat-GAM is not better than other har-

onization methods at detecting regions with significant case-control

ifferences and age by diagnosis interactions (see supplementary re-

ults section). We could not exclude the possibility that the superior-

ty of ComBat-GAM versus the other methods is driven by overfitting

ata from sites with very young or very old participants. Fig. 1 shows

he data distributions of the four sites are consistent with the litera-

ure, with steeper cortical thickness declines in youth and flatter age-

ppropriate declines in older adults ( Frangou et al., 2022 ; Mutlu et al.,

013 ). Furthermore, the three sites with participants < 20 years old ex-

ibit similar slopes of age-related declines in cortical thickness. There-

ore, rather than concluding that ComBat-GAM overfits data from chil-

ren contributed by specific sites, there is stronger evidence to conclude

hat ComBat-GAM accurately captures nonlinear age trends in cortical

hickness. Data from sites with a larger age range may address this con-

ern more conclusively. 

We found slower rates of age-related decline in cortical thickness in

ases compared to controls for 4 regions, but only for data harmonized

ith ComBat-GAM ( Figs. 8 and 9 ). As shown in supplementary Figs. S1

nd S2 , cases exhibited lower cortical thickness compared to controls in

outh and greater cortical thickness in elderly in the 4 regions. It is pos-

ible that PTSD induces more powerful cortical thinning in youth and

elayed age-appropriate declines in cortical thickness in elderly. This

xplanation is partly consistent with previous findings that maltreated

outh with versus without chronic PTSD have smaller volumes in the

osterior brain structures ( De Bellis et al., 2015 ). More studies are war-

anted to test whether case-control differences in age-related cortical

hinning is overfit by ComBat-GAM. 

A study by Ritchie et al. (2018) examined sex-differences in adults

rom UK Biobank (2750 females; males 2466; 44–77 years old) reported

hicker cortex across most of the cortex in females than males except for

he right insula. By contrast, harmonization with ComBat-GAM in our

tudy showed that females have greater cortical thickness in prefrontal

ortex, inferior parietal regions, and cingulate cortex, whereas males

ad greater cortical thickness in ventromedial prefrontal cortex, bilat-
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U  
ral insula, posterior cingulate areas, and occipital lobe ( Fig. 11 ). This

ifference may be explained by the large difference of age range in the

resent study (6.2–85.2 years old) compared to Ritchie et al. (2018) (44–

7 years old). As shown in Fig. 3 , the slopes of age-related changes

n cortical thickness are quite different between young (especially <

0 years old) and old participants. The significant differences between

ales and females in cortical thickness may be driven by the data of

elatively young participants. We found that ComBat and ComBat-GAM

utperformed LME harmonization methods for detecting differences be-

ween females and males. While we did not formally test harmoniza-

ion methods to detect age-related sex differences in cortical thickness,

rangou et al., 2022 reported that age-related declines in mean cortical

hickness were more rapid in males than females in the mid-life group

30–59 years), but not in the early-life group (3–29 years) and late-life

roup (61–90 years). 

The comparison of the regression coefficients showed that the se-

ection of harmonization methods may either overestimate or underes-

imate effects of interest, even though the corresponding comparisons

f the number of regions exhibiting significant effects were identical

etween methods. These findings are critical to interpreting statistical

utputs. For instance, the magnitude of reductions in cortical thickness

er year are biased by the harmonization method being used. 

In reporting that ComBat-GAM is more sensitive than other meth-

ds, we must be clear to specify our narrow definition of “sensitive ”, as

he harmonization method that leads to the maximum number of brain

egions with statistically significant effects. In fact, this metric does not

ecessarily determine better performance if we adopt a preferred def-

nition, namely the method that produces results that are most consis-

ent with the ground truth . Unfortunately, identifying ground truth is a

hallenging proposition, but we consider two options that may be infor-

ative and feasible. The first option is to acquire MRI scans and calcu-

ate cortical thickness from the same group of participants (or “travel-

ing subjects ”) on a variety of scanner manufacturers and MRI facilities.

owever, a sufficient sample size is essential as it must contain (1) a

epresentative number of cases and controls from (2) across the lifes-

an in (3) participants of both sexes, (4) scans at each MRI facility and

n scanners from each manufacturer. This is required to avoid possible

onfounds from interactions of scanner type and age, scanner type and

iagnosis, and scanner type and sex. A second option is to generate sim-

lated data from a large enough sample of participants, sites, and MRI

acilities. The simulated data could be generated by adding character-

stic noise, covariance, and bias profiles for each scanner manufacturer

nd each MRI facility. The simulated data could then be harmonized

ith several tools of interest to determine the method that produces data

hat most closely resembles the pre-noised data. Along the same lines,

he post-harmonization data and the pre-noised data could be modeled

or case-control effects, age effects, and interaction effects. The results of

tatistical modeling on post-harmonization datasets could be compared

o the results from modeling the pre-noised dataset. The harmonization

ethod that leads to results that most closely resemble the results ob-

ained from modeling the pre-noised data would be deemed most faith-

ul to the ground truth. Scanning an appropriate phantom may add value

o ascertaining the ground truth, but is unlikely to add value to charac-

erizing the role of age, sex, and diagnosis on harmonization methods. 

While our study focused on 4 widely adopted harmonization meth-

ds, these represent only a small number in a large array of avail-

ble methods. There has been a recent explosion in methods that ap-

ly machine learning and other advanced multivariate techniques to

ackle harmonization. More detailed discussions about machine learn-

ng in data harmonization please see supplementary section “Machine

earning in data harmonization ”. The dawn of the big data age has her-

lded the need for harmonization methods that operate well beyond

euroimaging data to flexibly and extensibly harmonize manifold data

ypes from social media, mobile devices, and sensors ( Agarwal et al.,

013 ; Davatzikos, 2019 ). The rapid proliferation of data harmonization

ethods and the ubiquity of machine learning applications will require
15 
areful vetting and rigorous comparisons between competing methods

sing standard criteria for ascertaining harmonization performance. The

rgent goal of advancing open science will be facilitated by develop-

ng and embracing advanced harmonization methods ( Foster and Dear-

orff, 2017 ). 

.1. Limitations 

There are four major limitations in the present study. Firstly, we

nvestigated age-related changes in cortical thickness. However, only

ross-sectional data was available. New approaches have been devel-

ped to harmonize data across scanners and sites as well as longitudinal

isits ( Beer et al., 2020 ; Dewey et al., 2019 ). Age-related cortical thin-

ing estimated by one longitudinal study design was 3 times greater

han cortical thinning from a cross-sectional study ( Rast et al., 2018 ).

econdly, we only investigated cortical thickness, which is one of many

rain measures that is disturbed in neuropsychiatric disorders. Further

tudies should investigate the performance of harmonization methods

n multi-modal neuroimaging data with various anatomical, diffusion,

unctional, and clinical/behavioral measures. Thirdly, only three sites

onstituted participants under 20 years, and one site constituted par-

icipants over 70 years. After removing these data, ComBat-GAM did

ot outperform other harmonization methods in detecting regions with

ignificant case-control differences and age by diagnosis interactions.

ata from sites with a larger age range may address this concern more

onclusively. Finally, we applied the same statistical model to the out-

ut of all harmonization methods to pinpoint differences between har-

onization methods rather than statistical models or the interaction of

armonization methodology and statistical modeling. In the main text,

he statistical model includes age, sex, and PTSD diagnosis as fixed fac-

ors. This model is simple and widely used in most psychiatric studies.

e also consider age by diagnosis, and sex by diagnosis interactions be-

ause they are frequently tested in the literature. The statistical models

isted in the main text may not fully reveal potential influences on cor-

ical thickness, and the optimal statistical model may differ depending

n the harmonization method. However, investigating potential inter-

ctions of harmonization method and statistical model are well beyond

he scope of this study. 

. Conclusion 

Cortical thickness data harmonized with ComBat-GAM relative to

ME INT , LME INT + SLP , and ComBat is more sensitive at detecting signifi-

ant case-control differences, and case-control differences that vary by

ge. Both ComBat and ComBat-GAM outperformed LME methods in de-

ecting significant sex differences. ComBat-GAM provides stronger es-

imates of age-related declines in cortical thickness, stronger estimates

f case-related cortical thickness reduction, weaker estimates of age-

elated declines in cortical thickness in cases than controls, stronger es-

imates of cortical thickness reduction in females than males, stronger

stimates of cortical thickness reduction in females compared to males in

ases than in controls. Our results support using ComBat-GAM to har-

onize cortical thickness data across study sites to recover statistical

ower potentially lost by instrumental bias. 
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