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Variability is a fundamental feature of human brain activity that is particularly pronounced during develop-
ment. However, developmental neuroimaging research has only recently begun to move beyond character-
izing brain function exclusively in terms of magnitude of neural activation to incorporate estimates of
variability. No prior neuroimaging study has done so in the domain of emotion regulation. We investigated
how age and affective experiences relate to spatial and temporal variability in neural activity during emotion
regulation. In the current study, 70 typically developing youth aged 8 to 17 years completed a cognitive
reappraisal task of emotion regulation while undergoing functional MRI. Estimates of spatial and temporal
variability during regulation were calculated across a network of brain regions, defined a priori, and were then
related to age and affective experiences. Results showed that increasing age was associated with reduced
spatial and temporal variability in a set of frontoparietal regions (e.g., dorsomedial prefrontal cortex, superior
parietal lobule) known to be involved in effortful emotion regulation. In addition, youth who reported less
negative affect during regulation had less spatial variability in the ventrolateral prefrontal cortex, which has
previously been linked to cognitive reappraisal. We interpret age-related reductions in spatial and temporal
variability as implying neural specialization. These results suggest that the development of emotion regulation
is undergirded by a process of neural specialization and open a host of possibilities for incorporating neural
variability into the study of emotion regulation development.
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Advances in in vivo functional neuroimaging have granted psy-
chologists novel insights into how the human brain develops and
functions. Although most research in developmental neuroscience has
focused on comparing the magnitude of neural responses at different
ages, accumulating evidence suggests that it is also important to assess
neural variability—that is, how the neural signal varies across time
and brain region within and between individuals (e.g., Durston et al.,
2006; Heller & Casey, 2016; Nomi, Bolt, Ezie, Uddin, & Heller,

2017). Variability is another dimension by which to categorize brain
function and age-related differences in neural variability likely reflect
important developmental processes, including the degree of special-
ization and experience-based plasticity (e.g., pruning) in neural cir-
cuits across age (Casey, 2015; Durston et al., 2006). Emotion regu-
lation presents itself as a particularly important skill to be assessed in
a developmental neural variability framework because it exhibits
protracted maturation and is critical for wellbeing (Cole & Deater-
Deckard, 2009; Gross, 2015; McLaughlin, Garrad, & Somerville,
2015). However, virtually all developmental neuroimaging studies of
emotion regulation to date have concentrated on age-related differ-
ences in the magnitude of brain activity across individuals and have
ignored how variability within individuals during emotion regulation
differs across development. The present study seeks to address this
knowledge gap by investigating how within-subject variability in
neural activity during emotion regulation—both spatial and tempo-
ral—is associated with age and affective experience in youth.

Conceptualizing Emotion Regulation and Clarifying
Theoretical Stances

Emotion regulation, frequently defined as modulation of affec-
tive processes in accordance with explicit or implicit goals (Etkin,
Büchel, & Gross, 2015), requires years of development before
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maturity is reached (Guassi Moreira & Silvers, 2018). Over the last
3 decades, an explosion of theoretical and empirical advances has
helped to establish various frameworks for studying emotion reg-
ulation (Camras, 2011; Cole, Martin, & Dennis, 2004; Gross &
Barrett, 2011). Across diverse theoretical orientations, it is largely
accepted that emotion regulation is dynamic, occurs over multiple
timescales, and draws upon a variety of supporting psychological
processes (Cole et al., 2004; Etkin et al., 2015; Gross & Barrett,
2011; Ochsner, Silvers, & Buhle, 2012). The dynamic nature of
emotion regulation requires that developmental research on this
topic consider age-related changes to the contexts in which regu-
lation occurs and the bottom-up affective experiences that trigger
regulation. Put another way, the very emotion that is being regu-
lated likely changes simultaneously with age and ability. More-
over, given seminal research demonstrating that emotional expe-
riences change not only in their means but also in their variability
across age (Larson, Csikszentmihalyi, & Graef, 1980), this work
signals the importance for focusing on variability in developmental
emotion regulation research.

Although the experimental paradigm used in this article con-
forms most directly to appraisal theory (Gross, 2015), considering
the role of neural variability in neurodevelopment stands to inform
a number of theoretical approaches to the study of emotion regu-
lation. The purpose of this report is not necessarily to support or
refute one theoretical ideology; instead we outline several exam-
ples throughout for how many different theoretical views might
stand to benefit by considering variability.

Prior Investigations of Emotion Regulation
Neurodevelopment Omit Variability

Inspired by behavioral work demonstrating that emotion regu-
lation abilities improve significantly during childhood and adoles-
cence (Kim & Richardson, 2010; Silvers et al., 2012; Somerville,
Jones, & Casey, 2010; Thompson & Goodman, 2010), a growing
number of neuroimaging studies have begun to explore the neural
bases of emotion regulation in youth. One popular means for doing
so has been to employ functional magnetic resonance imaging
(fMRI) in conjunction with tasks examining cognitive reapprais-
al—a widely studied and adaptive emotion regulation strategy that
involves thinking about a stimulus differently in order to modulate
its emotional import (Denny & Ochsner, 2014; Giuliani & Pfeifer,
2015; Gross, 2015; Ochsner et al., 2012). In healthy adults, reap-
praisal recruits frontoparietal regions commonly implicated in
cognitive control, including the ventrolateral, dorsolateral and dor-
somedial prefrontal cortex (vlPFC, dlPFC, and dmPFC, respec-
tively) as well as superior parietal lobule (SPL; Buhle et al., 2014;
Ochsner et al., 2004, 2012; Ochsner & Gross, 2005). Across
development, age is associated with increased recruitment of these
frontoparietal regions along with reduced negative affect, suggest-
ing that emotion regulation success improves as cognitive control
abilities become more fine-tuned (McRae et al., 2012; Silvers et
al., 2012, 2016; Silvers, Shu, Hubbard, Weber, & Ochsner, 2015).
These age-related neural and behavioral changes are observed
when individuals are instructed to reappraise but not when in-
structed to react naturally to emotional stimuli (McRae et al., 2012;
Silvers et al., 2012, 2015, 2016), suggesting that changes in emo-
tional responding are driven more strongly by changing regulatory
abilities than by changing baseline emotional experience. Al-

though informative, these initial developmental neuroimaging
studies of reappraisal have relied heavily on univariate analyses
that characterize age-related changes in terms of peak or mean
BOLD signal. As such, this existing work has helped advance the
field, but has also overlooked the role that neural variability may
play in emotion regulation.

Variability Is a Key Feature of Neural Function and a
Catalyst for Development

Variability is a fundamental feature of brain activity that is
distinct from “randomness” or “noise” (Pinneo, 1966). Neural
activity is organized according to structured spatial and temporal
profiles (Christophel, Iamshchinina, Yan, Allefeld, & Haynes,
2018; Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016; Huth,
Nishimoto, Vu, & Gallant, 2012; Luciana, Wahlstrom, Porter, &
Collins, 2012). Although not always thought of in terms of vari-
ability, the fact that spatial and temporal activation patterns within-
individuals vary between different psychological processes sug-
gests that variability is a defining feature of brain function (Etzel,
Zacks, & Braver, 2013; Patel, Kaplan, & Snyder, 2014). Neuronal
computations vary for different psychological processes, leading
neuroimaging data associated with different processes to vary as
well (Kriegeskorte, Cusack, & Bandettini, 2010). The mere fact
that seeing a face evokes a different pattern of activity than seeing
a house, for example, illustrates that configurations of brain activ-
ity are spatially variable (Haxby et al., 2001). Examining variabil-
ity is therefore one meaningful way to characterize the neural
substrates of psychological processes. We can think of three di-
verse reasons, encompassing both psychological and neuroscien-
tific perspectives, for why this notion matters. First, variability is
another fundamental dimension—in addition to magnitude—along
which psychological processes are embedded in the neural code. If
scientists want to understand the totality of how the brain gives rise
to psychology, it would be advantageous to examine this dimen-
sion as the neural underpinnings of psychological phenomena may
also be encoded in terms of variability (in addition to magnitude).
In doing so, researchers can quantify and parameterize develop-
mental change in a previously overlooked arena to glean novel
insights. Second, prior neuroscience research has revealed that
subtle fluctuations in neural activity are often more informative of
psychological processes than peak activations (e.g., Kelly, Uddin,
Biswal, Castellanos, & Milham, 2008; Nomi et al., 2017; Raichle
et al., 2001). Although the same is likely true for emotion regula-
tion, this possibility remains untested. Last, developmental psy-
chology research highlights that mean affective states change less
across age when compared with affective variability (Larson et al.,
1980; Larson & Lampman-Petraitis, 1989; Silvers et al., 2012).
However, neuroscientific research has yet to address this point.

Though within-individual variability pertaining to the neurode-
velopment of emotion regulation has not been examined, prior
research in psychology and developmental neuroscience can help
scaffold the present investigation. Psychologically, children try a
variety of strategies during development (i.e., exhibit high vari-
ability) before becoming expert in a narrower set of strategies
(Roalf et al., 2014; Siegler, 1994, 2007). Brain development ap-
pears to follow a similar pattern. Functionally, brain responses
may exhibit “focalization” across age—a shift from a more vari-
able spatial signature of activity to one that is more concentrated,
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and potentially specialized (Dehaene-Lambertz, Monzalvo, & De-
haene, 2018; Durston et al., 2006; Richardson, Lisandrelli,
Riobueno-Naylor, & Saxe, 2018). Importantly, however, evidence
for the shift from diffuse to focused activity has come from studies
examining average levels of brain activity across individuals of
different ages rather than examining within-subject variability.
These patterns of functional maturation may be driven, in part, by
pruning of initially overproduced synaptic connections to produce
increasingly specialized brain networks that retain only their most
essential connections (DuPre & Spreng, 2017; Durston et al., 2006;
Foulkes & Blakemore, 2018; Sowell, Thompson, Tessner, & Toga,
2001; Vij, Nomi, Dajani, & Uddin, 2018). These findings suggest
that neurodevelopment is characterized by a transition from diffuse
and spatially variable patterns of activity toward optimized and
constrained functional networks.

Investigating neural variability promises to enhance understand-
ing of neurodevelopment and generate novel hypotheses for future
research (Poldrack, 2015). For instance, studying within-person
variability can identify another dimension by which the activity of
brain regions and networks differs or covaries. This could help to
categorize emotion regulation strategies according to underlying
mental structure and to examine how psychological subprocesses
associated with different forms of emotion regulation develop
across age (Braunstein, Gross, & Ochsner, 2017; Eisenberg et al.,
2018). Relatedly, variability may serve as another metric for
assessing maturation of emotion regulation. As an example, the
dynamic systems view of development posits that variability
within individuals is a hallmark of developmental processes be-
cause systems are always in flux and that different developmental
stages are marked by different patterns of variability (see Smith &
Thelen, 2003). This variability can manifest at the neural level, as
we examine in this report, and at the behavioral level (e.g., youth
trying variations in emotion regulation tactics until settling upon a
preferred strategy). Under this view, formally quantifying variabil-
ity might allow for more precise mapping of individual brain
development growth curves as it relates to emotion regulation
skills across age in addition to charting what is the most adaptive
and ideal amount of variability for a given system across devel-
opment.

Incorporating Variability into the Study of Emotion
Regulation Neurodevelopment

We used the work summarized in the preceding text to guide our
question about how neural variability supports the neurodevelop-
ment of emotion regulation. In this study, we specifically focus on
spatial and temporal variability.

Spatial Variability

Spatial variability, or differences in how activation is distributed
across a brain region, is an important organizational feature of
neural activity. Psychological processes, including emotional ex-
periences, are encoded in richly detailed spatial topographies that
blanket the cortical landscape (Chang, Gianaros, Manuck, Krish-
nan, & Wager, 2015; Huth et al., 2016, 2012; Kriegeskorte et al.,
2008). Prior work in developmental neuroscience suggests that
such topographies are diffuse earlier in life and become focalized
with age and experience (Dehaene-Lambertz et al., 2018; Durston

et al., 2006; Park et al., 2004; Polk et al., 2002). Examining spatial
variability during a specific psychological process may be one way
to infer how specialized a given brain region is for that process for
a given individual. For example, if an individual shows a low
degree of spatial variability within ventrolateral prefrontal cortex
(vlPFC) during emotion regulation, then it suggests that activity is
concentrated to a specific subset of the neurons in that region. In
contrast, a high degree of spatial variability in another individual
would suggest that the computations that support emotion regula-
tion in vlPFC are being carried out across a larger population of
neurons for that person. Examining spatial variability promises to
uncover insights about the functional architecture of neurodevel-
opment that has relevance not only for emotion regulation but for
many other psychological processes. In the current study, we
implemented a novel method of estimating spatial variability by
repurposing an analytic technique from economics—Gini coeffi-
cients—to serve as a metric of spatial variability in a given brain
region. As will be described later, Gini coefficients are an espe-
cially useful tool because they can yield a numerical index of
spatial variability, helping to quantify complex theoretical con-
cepts such as focalization.

This approach can be particularly informative for affective neu-
roscience in its ability to highlight whether certain brain regions
covary or differ in their topographic organization by telling us how
patterns of activity are arranged across the surface of cortex (i.e.,
concentrated or diffusely). For instance, vlPFC, dlPFC, and
dmPFC may all show similar magnitudes of activity during reap-
praisal, but vlPFC and dlPFC may have more similar topographies
(i.e., both diffuse or both focal), indicating that a different psy-
chological subprocess is being implemented by those brain regions
compared to the computations in dmPFC (e.g., working memory
vs. mentalizing). One potential theoretical application of this work
would be to help test dominant theories that posit multiple exec-
utive functions support complex, cognitively demanding emotion
regulation strategies (Ochsner et al., 2012).

Temporal Variability

Although spatial variability can describe how brain function is
organized topographically, temporal variability can lend insight
into how brain activity changes over time to meet the dynamic
demands of one’s environment. This is especially relevant for
psychological phenomena that change over time, such as emotion
regulation (Aldao, Sheppes, & Gross, 2015; Heller & Casey,
2016). Studying temporal variability in brain activation across
multiple instances of emotion regulation can lend insight into how
neural computations adjust according to varying regulatory de-
mands. Situations that require emotion regulation vary markedly—
emotion regulation may be required to maintain calm in a traffic
jam or to respond to the loss of a loved one. Learning to consis-
tently mount an effective regulatory response to variable affective
events is a significant developmental hurdle. Given that youth tend
to experience more intense and labile affect, and yet have fewer
cognitive resources to draw from, we might expect them to display
less consistent (i.e., more variable) neural recruitment during self-
regulation (Larson et al., 1980; Mischel & Mischel, 1983; Silvers
et al., 2012; Somerville et al., 2010). As individuals mature and
experience with emotion regulation grows, however, neural com-
putations underlying emotion regulation are likely to become more
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consistent (i.e., less variable; Koolschijn, Schel, de Rooij, Rom-
bouts, & Crone, 2011; Ordaz, Foran, Velanova, & Luna, 2013).

Current Study

In the current study, we used fMRI to examine spatial and
temporal variability of frontoparietal brain responses during cog-
nitive reappraisal—one particular emotion regulation strategy—in
a sample of typically developing youth. We further sought to
characterize how spatial and temporal variability related to age and
affective experiences during emotion regulation via reappraisal in
this sample. By doing so, we were able to observe how two forms
of within-individual neural variability related to age and experi-
ences of affect during emotion regulation (Foulkes & Blakemore,
2018). Given the paucity of research on this matter, this research
was exploratory and guided by open questions regarding neural
variability and emotion regulation rather than formal hypotheses.
The methods and framework for studying variability described
here are not necessarily beholden to one theoretical orientation, but
rather showcase that variability is a meaningful feature of neuro-
development with clear implications for a variety of perspectives
on emotion regulation.

Method

Participants

Participants included 70 youth (34 female) ranging in age from
8.08 to 17.00 years (Mage � 12.70). These participants were drawn
from a larger sample taking part in a longitudinal study aimed at
understanding the effects of childhood maltreatment on affective
neurodevelopment. Only youth from the nonmaltreated commu-
nity control group were selected for the current analyses. Exclu-
sion criteria for this group included exposure to childhood mal-
treatment or violence, presence of a developmental disorder (e.g.,
autism), psychotropic medication use, and IQ � 75. To qualify for
inclusion in the current analysis, participants had to have (1)
accompanying behavioral data from the in-scan emotion regulation
task (described subsequently); (2) low levels of motion during the
scan (see the following text); and (3) anatomical images that were
free of abnormalities or artifacts. Participants and their families
were recruited from a large, metropolitan area in the Pacific
Northwest. Parents provided written consent and children provided
written assent in accordance with the University of Washington’s
Institutional Review Board (Project title: Child Maltreatment &
Neural Systems Underlying Emotion Regulation; Project number:
47,940-G). Participants were compensated $75 for completing the
brain scan.

fMRI Approach

fMRI paradigm. During the fMRI scan, participants com-
pleted a computerized version of a cognitive reappraisal task
adapted from prior developmental studies of emotion regulation
(McLaughlin et al., 2015; Silvers et al., 2016). Though youth have
many emotion regulation strategies at their disposal (Braunstein et
al., 2017; Guassi Moreira & Silvers, 2018), a cognitive reappraisal
task was chosen for a number of reasons. It is one of the most
widely studied emotion regulation strategies in adult, pediatric,

and clinical samples and thus had a robust literature to reference.
It is frequently linked to a variety of adjustment outcomes (Denny
& Ochsner, 2014; Giuliani & Pfeifer, 2015; Haines et al., 2016;
Panno, Lauriola, & Figner, 2013). Last, it is more feasible to
implement in a scanner environment compared to other emotion
regulation strategies (e.g., situation selection or social support
seeking). With this said, we note that the methods of estimating
variability outlined below are not limited for use solely in the
context of cognitive reappraisal and can be employed with other
emotion regulation paradigms as well as a broader class of psy-
chological processes altogether.

During the task, participants viewed a series of developmentally
appropriate aversive and neutral images modeled after the Inter-
national Affective Picture System (IAPS) stimulus set (Lang,
Bradley, & Cuthbert, 2008). Great care was taken to create and
validate a stimulus set that would be appropriate to use in children
and adolescents. Aversive images all depicted conflict between
individuals or personal struggles (e.g., an individual sitting alone
in sadness). Moreover, such images were especially relevant for
youth because they portrayed youth in aversive scenarios common
to their lives (e.g., depiction of bullying/fighting behaviors, adults
fighting in front of children). Images were purchased from a stock
photography website (https://www.shutterstock.com), including
225 negative and 150 neutral images. In a pilot study, 120 children
aged 6 to 16 years (50% female) provided ratings of valence,
arousal, and dominance for a randomized selection of 80 images
using the standardized assessment mannequins used to norm the
IAPS stimuli. The stimuli and normative ratings are available on
the lab website of the principal investigator of the original study
(www.stressdevelopmentlab.org). Images were selected from the
larger stimulus set based on the valence ratings from the pilot
study; the images with the most negative valence ratings were
selected for the negative condition, and those closest to the mid-
point of the valence scale were selected for the neutral condition.
This custom image validation procedure is a notable strength, as
most developmental imaging investigations of emotion regulation
typically rely on stimulus sets that have been developed and
validated for use in adults.

During the task, participants were instructed to either passively
observe or reappraise the images via psychological distancing.
Afterward, participants provided their ratings of negative affect
along a four-point Likert scale (see Figure 1). Though there are
limitations of self-report, it also has several strengths: (1) It is
tightly associated with various physiological measures (Levesque
et al., 2004; Ochsner & Gross, 2008; Ray, McRae, Ochsner, &
Gross, 2010), (2) it provides relatively direct access to one’s
emotional experiences in ways that observational measures (in-
cluding physiology) cannot (Larsen & Prizmic-Larsen, 2006), (3)
it is easily compatible with the scanning environment and has
relatively few task demands, and (4) it is unambiguous relative to
certain physiological measures such as heart rate variability (HRV)
or respiratory sinus arrhythmia (RSA; Heathers & Goodwin, 2017)
where two or more psychological and affective signals can yield
the same pattern of results. Participants reappraised negative stim-
uli on 20 trials, passively observed negative stimuli on 20 trials,
and passively observed neutral stimuli on 20 trials. Prior to each
image, an instructional cue was displayed that informed partici-
pants whether they were to passively observe (“Look”) or regulate
(“Far”) the subsequent image. For “Look” trials, participants were
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told to passively observe the stimulus and react to it as they
normally would. During “Far” trials, participants were trained to
reappraise the image in a way that made it psychologically distant,
such as pretending they were physically standing far from the
image in each scene or that they were behind a movie camera,
recording the events shown in the picture. Since our interests lay
in characterizing spatial and temporal variability during active
emotion regulation, we focused on “Far” trials for the current
report.

Prior to scanning, participants completed a training session
where they received information about the meaning of the instruc-
tional cues and how they were to think about stimuli presented
after each type of cue. Experimenters then shared several examples
of each condition to participants before asking them to complete a
series of five practice trials for each condition. During the in-scan
task instructional cues were presented for 2 s and stimuli were
jittered such that they were displayed for 6 s–10 s. The Likert scale
was presented thereafter for 4 s followed by a 1.5 s – 6.5 s
intertribal interval (ITI). Participants completed four runs, each
lasting approximately 220s (runs ranged between 110 and 115
volumes in length). The aversive stimuli used for “Look” and
“Far” trials did not differ in their normative ratings of valence and
arousal. The task was programmed using E-Prime (Psychology
Software Tools, http://www.pstnet.com).

fMRI data acquisition. Prior to image acquisition, partici-
pants younger than 12 years old or who exhibited any signs of
nervousness about scanning were taken to a mock MRI scanner to
become familiarized with the scanning environment and trained on
how to minimize head motion. These participants watched a film
on a back-projector with a head-mounted motion tracker. The film
paused if a head movement exceeding 2 mm occurred, helping
participants quickly learn to keep still while in the mock scanner
bore. In addition to this measure, participants were packed into the
head coil with an inflated, head-stabilizing pillow to restrict move-
ment.

Image acquisition was conducted on a 3T Phillips Achieva
scanner at the University of Washington (Seattle) Integrated
Brain Imaging Center. A 32-channel head coil was imple-
mented, along with the use of a parallel image acquisition
system. T1-weighted, magnetization-prepared rapid acquisition
gradient echo (MPRAGE) volumes were acquired (TR � 2,530
ms, TE � 1640 –7040 �s, 7° flip angle, 256 mm2 FOV, 176
slices, 1 mm3 isotropic voxel size). Blood oxygenation level
dependent (BOLD) signal during functional runs was acquired
using a gradient-echo T2�-weighted echoplanar imaging (EPI)
sequence. Thirty-two 3-mm thick slices were acquired parallel
to the AC-PC line (TR � 2,000 ms, TE � 30 ms, 90° flip angle,
256 � 256 FOV, 64 � 64 matrix size).

fMRI data preprocessing. Prior to preprocessing, data were
visually inspected for artifacts and anatomical abnormalities. fMRI
data were preprocessed and analyzed using the fMRI Expert Anal-
ysis Tool (FEAT, Version 6.00) of the FMRIB Software Library
package (FSL, Version 5.0.9; fsl.fmrib.ox.ac.uk). Preprocessing
consisted of using the brain extraction tool (BET) to remove
nonbrain tissue from functional and structural runs, spatial realign-
ment of functional volumes to correct for head motion using
MCFLIRT, and hi-pass filtering the data (100-s cutoff). The extent
of participant head motion was further estimated by running FSL
Motion Outliers to record volumes that exceeded a 0.9 mm thresh-
old of framewise displacement (FD; Siegel et al., 2014). Runs were
discarded if participants exceeded this threshold for more than 25
volumes (�20% of a single run). Six participants had at least one
run discarded due to excessive head motion (Mean number of
discarded runs for eligible participants � 2 runs). The average
number of volumes exceeding our FD threshold per run, per
participant was 2.333 (SD � 4.04, range � 0–16.5); prior to
discarding runs it was 3.014 (SD � 6.09, range � 0–30.75). Since
a goal of the study was to examine how spatial variability related
to age and experiences of negative affect, we elected not to
spatially smooth our data. Data were prewhitened to account for

Figure 1. Overview of emotion regulation paradigm. “Far” refers to the cue participants received to regulate
via distancing; passive viewing cue (“Look”) is not pictured. Participants regulated aversive images and
passively viewed both aversive and neutral images (not pictured). Each trial was followed by a jittered intertribal
interval lasting between 1.5 s to 6.5 s. Image reproduced with permission, under license from shutterstock.com
(ESB Professional/Shutterstock.com. Copyright Shutterstock, 2003–2019). See the online article for the color
version of this figure.
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autocorrelated residuals across time. In addition to spatial and
temporal variability analyses described below, we also ran tradi-
tional univariate analyses. A description of preprocessing for said
analyses and their results can be found in the online supplemental
material.

ROI definition. We identified seven brain regions implicated
in emotion regulation from a prior meta-analysis (Buhle, Silvers, et
al., 2014). For the rest of this article, we refer to these seven
regions as ROIs. Each ROI from the original meta-analysis con-
tained one global maximum—the peak voxel from the cluster—
and at least one other local maximum (voxels that constitute
regional peaks within the cluster). Global and local maxima from
these ROIs are described as spheres.

We defined ROIs based on a multikernel density meta-analysis
of cognitive reappraisal fMRI studies (Buhle, Silvers, et al., 2014)
and created spheres around the maxima in each ROI (global and
local). ROIs were identified based on clusters reported in Table 2
of Buhle, Silvers, et al. (2014), resulting in seven ROIs: right
dorsolateral prefrontal cortex (R dlPFC), left dorsolateral prefron-
tal cortex (L dlPFC), right ventrolateral prefrontal cortex (R
vlPFC), right dorsomedial prefrontal cortex (R dmPFC), left mid-
dle temporal gyrus (L MTG), left superior parietal lobule (L SPL),
and right superior parietal lobule (R SPL). We then drew spherical
masks (4 mm radius) around each maxima (global and local). On
the rare occasions that spheres extended beyond the boundaries of
the brain, spheres were moved inward. Our choice to use 4-mm
radius spheres was motivated by the fact that anything smaller
would have rendered an insufficient number of voxels with which
to calculate Gini coefficients, and that anything larger would have
resulted in overlapping spheres. Clusters varied substantially in

size and some had multiple local maxima (i.e., subclusters). In
total, we created 32 spheres across the seven ROIs (7 L dlPFC; 3
R dlPFC; 4 R vlPFC; 7 R dmPFC: 2 L MTG; 5 L SPL; 4 R SPL).
Spatial and temporal variability estimates were computed using
their respective GLMs (described subsequently) with this set of
spheres. Estimates of variability from each sphere were then sub-
mitted to multilevel measurement models for further analysis
(described in the following Statistical Approach section). Figure 2
provides an illustration of our ROI definition. Because our focus
was on understanding variability in the regions known to instan-
tiate top-down emotion regulation, we did not evaluate either type
of variability in the amygdala.

Spatial variability estimation. We first submitted each par-
ticipant’s data to a fixed effects analysis using a standard general
linear model (GLM) in FSL. The reappraisal task was modeled
with five task regressors, each convolved with the canonical HRF
(double gamma). A regressor for the instructional cue (“instruc-
tion”), one for each task condition (far, look-negative, look-
neutral), and a final regressor for the affect rating period (“rating”)
were modeled. Slice-timing effects were corrected for by including
the temporal derivative of each task regressor in the model. Rota-
tion and translation parameters obtained from MCFLIRT, along
with their derivatives and the squares of each, were added as
nuisance regressors to reduce the effects of head motion on func-
tional data. Volumes exceeding 0.9 mm in FD were censored at
this stage of this analysis using output from FSL Motion Outliers.
A second level analysis, which averaged contrast estimates within
subject, was carried out using a fixed effects model by forcing the
random effects variance to zero. Registration of functional data to
the high resolution structural (MPRAGE) was carried out using

Figure 2. Illustrative schematic of region of interest (ROI) definition. Clusters from a prior meta-analysis (a)
were used to define spheres nested within ROIs (b). For clarity, not all significant clusters from Buhle, Silvers,
et al. (2014) are depicted in the figure. Only left dorsolateral prefrontal cortex (dlPFC) (green), left middle
temporal gyrus (orange), left superior parietal lobule (SPL) (purple), right SPL (light turquoise), right dlPFC
(red) and right ventrolateral prefrontal cortex (blue) are depicted and dorsomedial prefrontal cortex has been
omitted. Certain ROIs contained spheres (e.g., right dlPFC) that are not shown because they were below the
lateral surface and could not be surface rendered. See the online article for the color version of this figure.
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FSL’s boundary based registration algorithm (Greve & Fischl,
2009). Each participant’s MPRAGE was then nonlinearly regis-
tered to the MNI152 template image (10-mm warp resolution), and
the transformation matrix was subsequently used to warp the
functional images.

We used univariate activation estimates from the voxels within
each sphere to calculate Gini coefficients, a simple but powerful
way to quantify spatial variability (Guest & Love, 2017; Leech et
al., 2014; Pyatt, 1976). The Gini coefficient was originally devel-
oped to study income inequality within specified geographic loca-
tions (e.g., cities, countries; Pyatt, 1976). Gini coefficients can
range in value from 0 to 1. In the context of income inequality, a
Gini coefficient of 0 means that everyone in a given location has
exactly the same income; a coefficient of 1 means that one person
has all the income and no one else has any. In the context of fMRI
data, Gini coefficients can be used to measure the inequality of
activation (i.e., BOLD response) among voxels within a given
ROI, with greater inequality of activation implying that a smaller
subset of voxels account for a larger portion of BOLD signal
within the ROI during a given psychological process. In other
words, a higher Gini coefficient (i.e., value closer to 1) represents
greater inequality of neural activation within a sphere and means
that fewer voxels are accounting for more of the activity within the
ROI. As this occurs, more activation is peaked around said voxels
and less activity is distributed across the rest of the sphere. Larger
Gini coefficients indicate that relatively more activation is distrib-
uted across a relatively smaller space. Therefore, higher coeffi-
cients correspond to less spatial variability across a sphere. In other
words, a greater Gini coefficient indicates activity is confined to
fewer voxels and is less free to vary across the sphere (see Figure
3 for a visualization). Gini coefficients are useful because they can
yield a single numerical index of spatial variability, thus helping to
quantify complex theoretical concepts such as focalization. Our
procedure for quantifying spatial variability via Gini coefficients
follows.

As stated previously, our primary focus was on identifying
variability during emotion regulation. As such, parameter esti-
mates from the GLM were used to create a linear contrast image
comparing the regulation condition (Far) to baseline. These vox-
elwise contrast values, in the form of Zstat images, were extracted
from each sphere using the cosmo_fmri_dataset() command in the

MatLab-based CoSMoMVPA toolbox (Oosterhof, Connolly, &
Haxby, 2016). The subsequent vector of parameter estimates from
each voxel within each sphere was sorted by magnitude and
minimum-centered (i.e., we centered at the minimum by subtract-
ing the lowest value in the vector from all elements). Minimum
centering ensured that the Gini coefficients remained bound be-
tween 0 and 1. Following this step, we used the ordered, minimum-
centered vector of parameter estimates to calculate a Gini coeffi-
cient; see the following equation:

�i�1
n (2i � n � 1)xi

n�i�1
n xi

, (1)

where i represents the rank of a given voxel’s activation, n is the
total number of voxels, and xi is the activation value (i.e., param-
eter estimate) for the i-th voxel. Overall, all subjects had 32 Gini
coefficients, each corresponding to a sphere from our ROI list.
Importantly, an additional analysis revealed that Gini coefficients
were orthogonal to estimates of activity magnitude (details and
caveats are discussed in the online supplemental material). Figure
4 displays an overview of Gini coefficient calculation.

Temporal variability estimation. Temporal variability was
estimated by taking the standard deviation of a beta-series (Riss-
man, Gazzaley, & D’Esposito, 2004) within each sphere. This was
executed in three steps. First, we estimated brain activity for each
trial using the least squares single (LSS) approach (Mumford,
Davis, & Poldrack, 2014; Mumford, Turner, Ashby, & Poldrack,
2012). A fixed-effects GLM was created for each regulation (Far)
trial such that the trial of interest was given its own regressor in its
own GLM and other trials for that condition were modeled with a
separate nuisance regressor. Trials belonging to other conditions
(e.g., look-negative, look-neutral, instruction, etc.) and motion
parameters (Standard � Extended � Volumes Exceeding 0.9-mm
FD) were modeled as their own regressors but not analyzed fur-
ther. An LSS approach was selected because it is flexible for
various types of analyses and results in less multicollinearity
between activation estimates for each trial compared to the least
squares all (LSA) approach. The second step entailed using pa-
rameter estimates from each trial-specific GLM to create a linear
contrast image comparing each regulate (Far) trial to baseline. We
extracted average estimates of activation within a given sphere

Figure 3. Conceptual overview of Gini coefficients and spatial variability. The two grids each represent
hypothetical voxels from a region of interest (ROI), with color codes indicating each individual voxel’s level of
activity. Though the mean level of activity is the same in each voxel, the grid on the right has fewer voxels
accounting for more of the ROI’s activation, with overall activity less diffusely distributed across the ROI. In
this manner, Gini coefficients can measure the spatial variability of an ROI. See the online article for the color
version of this figure.
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across the beta series from the Zmap of the regulate (Far) �
baseline contrast. This resulted in an n � p matrix for each subject,
where n is the number of trials and p is the number of spheres.
Each matrix entry represents the mean activity of the p-th sphere
at the n-th trial. The standard deviation of each column was then
taken as the third and final step, yielding p estimates of temporal
variability (where p corresponds to the number of spheres) for each
subject. Each participant had 32 estimates of temporal variability,
each corresponding to a sphere. Figure 5 depicts an overview of
this estimation procedure.

Statistical Approach

Overview. We used multilevel measurement models to char-
acterize spatial and temporal variability during emotion regulation
(Hox, 2010). These models were further used to examine links
between variability, age, and affective experience. Below, we
describe our motivation for this approach and its benefits before
elaborating the modeling procedure in detail. Notably, the vari-
ability metrics described in the preceding text and the measure-
ment models described in the following text can be applied to
fMRI data obtained with virtually any emotion regulation para-
digm.1 Moreover, the methods described here can be applied to
other conceptualizations of emotion regulation. Code and data are
publicly available on the open science framework (osf.io/42fkx/).

Motivation. As described in the preceding text, we chose our
ROIs on the basis of clusters identified by a recent meta-analysis
(Buhle et al., 2014). Importantly, the seven primary clusters of
activation reported in this meta-analysis varied widely in terms of
voxel size (k � 77 to k � 517). Using these whole clusters as ROIs
would have been problematic, as some clusters would gain en-
hanced precision from data pooled across a greater number of
voxels while making comparisons between regions difficult to
interpret. One way to overcome this problem would be to draw a
sphere around the global maxima for each cluster. However, this
approach is also flawed because it ignores additional information
from the rest of the cluster not included in the sphere. The
approach used in the present article represents an effort to incor-
porate as much information as possible from each ROI while
maintaining an equal size for each sphere.

The first step of our approach involved drawing spheres (4-mm
radius) around all the maxima (both global and local) within each
cluster defined by Buhle et al. (2014). We then estimated spatial
and temporal variability within each maxima sphere and impor-
tantly, nested each local maxima sphere by its ROI (i.e., global
maxima). We treated these measurements as manifest (i.e., ob-
served) variables in a multilevel measurement model to estimate
latent values for each ROI that varied between subjects. For
example, the Buhle et al. meta-analysis identified a 175-voxel
cluster in right dlPFC (labeled as right middle frontal gyrus in the
meta-analysis). This large cluster’s peak was at X � 60, Y � 24,
Z � 3 but also contained two local maxima (X � 48, Y � 24, Z �
9; X � 48, Y � 15, Z � 6). For this particular cluster, three
spheres were constructed (one at each peak) and were then nested
under a supraheading of right dlPFC. This allowed us to accurately
estimate indices of variability within each ROI that also appropri-
ately incorporated the size of each ROI.

Our multilevel measurement model approach has several bene-
fits. It makes use of data from many spheres within each ROI while
using equal sized spheres between ROIs; it minimizes the possi-
bility of including information that was still present in the original
ROI-defining meta-analysis due to shared error variance (i.e., from
method variance) across studies; it appropriately acknowledges the
multilevel structure of the data (multiple measurements nested
within participants); it provides a more analytically stable solution
than simply running OLS regressions with many terms from our
spheres in a single model and avoids the problem of multiple
comparisons from running many smaller, ROI-specific OLS re-
gression models.

Modeling Procedure

After obtaining estimates of spatial and temporal variability, we
analyzed these metrics in two separate multilevel measurement
models. Specifically, we estimated latent indices of spatial and

1 Some kind of beta-series or timeseries is required for estimation of
temporal variability, but most fMRI tasks can be marshalled to fit this
prerequisite. Multiple spheres nested within multiple ROIs are required for
multilevel measurement models as used here.

Figure 4. Using Gini coefficients to quantify spatial variability. Gini coefficients were computed across a
series of spheres for neural activity during emotion regulation relative to baseline. Spheres drawn from a set of
a priori regions of interest (ROIs), such as the exemplars depicted in (a), were used to extract data from activation
maps of regulate (Far) � Baseline (fixation) for each participant. The data consisted of a vector of voxels falling
within the sphere (vx.1 to vx.n), each with an estimate of activation for the regulate (‘far’) condition (b). This
vector was sorted in ascending order, minimum-centered, and submitted to calculation in order to yield a Gini
coefficient (c). The vector of activations displayed here is purely for illustrative purposes and does not depict
actual data. See the online article for the color version of this figure.
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temporal variability for each ROI and investigated their relation-
ship with age and self-reported affect. Our analytic approach used
multilevel modeling to take estimates of variability from spheres
drawn around the maxima within each ROI and create a more
accurate estimate for the ROI that they comprised. Put another
way, the estimates of variability from each sphere of an ROI were
used to calculate a latent value for the entire ROI. The relation-
ships between each latent variable (one for each ROI) and its
manifest variables (i.e., spheres) were allowed to vary by partici-
pant. We further modeled the variance of these latent variables for
each ROI as a function of between-person variables of interest: age
and average ratings of negative affect during emotion regulation.
Two multilevel measurement models—one to measure latent spa-
tial variability and another to measure latent temporal variability—
were estimated using the hierarchical linear modeling software
(HLM for Windows, Version 6.06; Raudenbush & Byrk, 2002).

Within-person spatial variability model. The within-person
measurement model for estimating spatial variability follows.

Gip � �1i � ldlPFC � �2i � rdlPFC � �3i � rvlPFC

� �4i � rdmPFC � �5i � lMTG � �6i � lSPL �

�7i � rSPL � eip (2)

Here, Gip represents the Gini coefficient, our index of spatial
variability, for the i-th individual at the p-th sphere. The slopes
in this equation (	1i – 	7i) each represent participant-specific,
latent Gini coefficients for a given ROI. That is, they are the
idealized estimates of Gini coefficients for each ROI, purged of

measurement error. Variables labeled by ROI (e.g., ldlPFC,
lMTG) reflect overparameterized dummy codes that signify
which ROI each Gip belonged to. In other words, Equation 2
creates a latent, idealized Gini coefficient for every ROI using
the observed Gini coefficients from each ROI’s constituent
spheres while discarding measurement error (eip). Notably, the
lack of an intercept in this model is intentional, as it allows
information about average Gini coefficients for each ROI to be
encoded in the slopes (i.e., 	s).

Within-person temporal variability model. The within-
person measurement model for estimating temporal variability
followed a nearly identical equation as the preceding model.

SDip � �1i � ldlPFC � �2i � rdlPFC � �3i � rvlPFC

� �4i � rdmPFC � �5i � lMTG � �6i � lSPL �

�7i � rSPL � eip (3)

SDip represents the standard deviation of the p-th sphere’s beta-
series for the i-th individual. Paralleling the previous equation,
slopes in this equation represent idealized, participant-specific
estimates of temporal variability for each ROI. The same set-of
overparameterized dummy codes were used to indicate to which
ROI each sphere’s temporal variability estimate “belonged.”

Between-person model. Between-person equations for the
two models were identical in form (but of course differentially
represented spatial and temporal variability):

�1i � �10 � �11 � Age � �12 � Neg. Aff. � r1i (4)

Figure 5. Using least-squares single trial analyses to estimate temporal variability. Least squares single (LSS)
analyses were used to estimate trial-specific activation for all “Far” trials. In LSS, each trial is estimated in its
own General Linear Model (GLM) where it is the target trial (a). As shown in the schematic, the target trial is
given its own regressor (blue arrow), all other trials in that condition are dumped into a nuisance regressor
(yellow arrow), and regressors from other conditions of interest are modeled as they normally would otherwise
(green arrow). This process is repeated so that one has as many GLMs as target trials. Activations from the
resulting beta-series were extracted from our spheres of interest to yield a n � p matrix, where each entry
represents a measure of brain activity for the p-th sphere during the n-th trial (b). Individual subject estimates
of temporal variability for each sphere were calculated by taking the standard deviation of each sphere’s
respective beta-series. The design matrices and beta-series matrix displayed here are purely for illustrative
purposes and do not depict actual data. See the online article for the color version of this figure.
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�2i � �20 � �21 � Age � �22 � Neg. Aff. � r2i (5)

�3i � �30 � �31 � Age � �32 � Neg. Aff. � r3i (6)

�4i � �40 � �41 � Age � �42 � Neg. Aff. � r4i (7)

�5i � �50 � �51 � Age � �52 � Neg. Aff. � r5i (8)

�6i � �60 � �61 � Age � �62 � Neg. Aff. � r6i (9)

�7i � �70 � �71 � Age � �72 � Neg. Aff. � r7i (10)

In the between-person part of the model, participant-specific latent
variables (	’s) are modeled as a function of overall, conditioned
fixed effects for the latent variables, age, and mean self-reported
average negative affect ratings during active regulation (
’s). The
addition of participant specific deviations to the between-person
part of the model allowed the within-person latent variables to vary
between individuals (rs). This procedure allows us to test how age
and affective experience relate to participants’ spatial and temporal
variability for each ROI. Both age and average ratings of negative
affect were grand mean centered before being entered into the
model.

Results

Behavioral Results

The average rating of mean participant negative affect during
Far trials was 1.948 (SD � .499), meaning that our participants
were on average rating the negative stimuli during reappraisal as
inducing low-medium negative affect. The average ratings of
negative affect during look-negative and look-neutral trials were
2.48 (SD � .562) and 1.08 (SD � 0.171), respectively. We
conducted a paired samples t test between average far and look-
negative ratings as a manipulation check, revealing significantly
different means, t(69) � �10.37, p � .001. Age was unrelated to
mean ratings of negative affect during far-negative (r � �0.092,
p � .250), look-negative (r � .184, p � .128), and look-neutral
(r � .117, p � .250) trials. However, the capacity to reappraise—
defined as the percent change in ratings of negative affect between
the far and look-negative conditions—increased with age (r �
.377, p � .01), consistent with prior work (Silvers et al., 2012). As
noted earlier, the focus of the study was on emotion regulation so
all subsequent analyses focus only on the far condition.

Spatial Variability

Gini coefficient validation. Given that Gini coefficients have
only recently been introduced to neuroimaging research (Guest &
Love, 2017; Leech et al., 2014), it was necessary to validate this
novel technique in three ways. We first empirically confirmed that
Gini coefficients were not simply capturing information about the
magnitude of neural activity. That is, our Gini coefficients were
orthogonal to ROI means and peaks and thus represent information
about variability and not magnitude (see the online supplemental
material). Following this, we next tested whether Gini coefficients
reflected greater focalization of activation. Consistent with this
hypothesis, we found that greater Gini coefficient values reflected
the spatial coalescence of an ROI’s most active voxels. That is, the
most active voxels in a given ROI were more likely to be closer
together and not distributed across the entire sphere. Last, we

sought to determine whether Gini coefficients were actually sim-
ply a proxy for gray matter tissue composition within our ROIs.
Results indicated that Gini coefficients are independent of gray
matter tissue composition. Statistical output and technical details
about these analyses are reported in full in the online supplemental
material.

Spatial variability results. As reported in Table 1, relatively
similar estimates (range � .27–.28) of spatial variability (i.e., Gini
coefficients) were observed across ROIs. Low Gini coefficients
suggest that activity was distributed somewhat evenly over voxels
within each ROI. Given the results of our validation analyses
described in the preceding text (and detailed in the online supple-
mental material), these Gini coefficients are interpreted as poten-
tially reflecting the presence of a centralized hub of activity, as the
most active voxels were concentrated in a focal set of adjacent
voxels. The fact that different ROIs had similar mean amounts of
spatial variability implies a preserved spatial topography across
ROIs during emotion regulation.

Across participants, estimates of latent spatial variability in left
SPL were marginally related to age (
 � .002, SE � .001, p �
.051; see Table 1). As age increased, fewer voxels in left SPL
accounted for more activation than in younger participants. In

Table 1
Fixed Effects of Latent Gini Coefficients (Spatial Variability)
and Moderators from the Measurement Model

ROI 
 SE p SD(ri)

L dlPFC .278 .002 .007
Age .000 .001 .617
Negative affect �.009 .005 .112

R dlPFC .280 .003 .006
Age .001 .001 .512
Negative affect �.002 .006 .782

R vlPFC .277 .004 .011
Age .001 .001 .640
Negative affect �.013 .007 .049�

R dmPFC .284 .003 .007
Age .000 .001 .866
Negative affect .002 .004 .673

L MTG .274 .005 .015
Age �.001 .002 .689
Negative affect .001 .010 .907

L SPL .280 .003 .011
Age .002 .001 .051†

Negative affect �.002 .006 .705
R SPL .279 .003 .007

Age �.002 .001 .212
Negative affect �.001 .006 .884

Note. Age and negative affect refer to each participant’s age and average
rating of negative affect during reappraise (‘far’) trials (both mean cen-
tered). The 
s next to each region of interest (ROI) label represent fixed
effects of latent Gini coefficients for those regions. The 
s below them
represent the respective associations between age and experiences of
negative affect and each participant’s specific latent Gini coefficient for
each ROI. SD(ri) represents the standard deviation of between person
residuals in predicting individual specific latent Gini coefficients from
fixed effects of latent Gini coefficients, age, and average negative affect.
Robust standard errors (SE) are reported. dlPFC � dorsolateral prefrontal
cortex; vlPFC � ventrolateral prefrontal cortex; dmPFC � dorsomedial
prefrontal cortex; MTG � middle temporal gyrus; SPL � superior parietal
lobule.
† p � .10. � p � .05.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1930 GUASSI MOREIRA, MCLAUGHLIN, AND SILVERS

http://dx.doi.org/10.1037/dev0000687.supp
http://dx.doi.org/10.1037/dev0000687.supp
http://dx.doi.org/10.1037/dev0000687.supp
http://dx.doi.org/10.1037/dev0000687.supp
http://dx.doi.org/10.1037/dev0000687.supp
http://dx.doi.org/10.1037/dev0000687.supp


terms of affect, lower levels of negative affect during reappraisal
(i.e., more successful emotion regulation) were associated with a
greater Gini coefficient in vlPFC activation (
 � �.013, SE �
.007, p � .049). This means that successful emotion regulation in
youth was associated with having fewer voxels in right vlPFC
account for more of the activation.

Temporal Variability

Results of the temporal variability measurement model are listed
in Table 2. In contrast to what was observed with spatial variabil-
ity, temporal variability varied markedly across the seven ROIs.
Descriptively, temporal variability followed an apparent spatial
gradient, such that prefrontal regions generally showed relatively
less variability in activation across time compared to parietal and
temporal regions.

We observed significant, and marginally significant, associa-
tions with age in right dmPFC (
 � �.010, SE � .004, p � .005),
right vlPFC (
 � �.009, SE � .005, p � .092), and left MTG
(
 � �.007, SE � .004, p � .079). Specifically, as age increased
temporal variability across these three ROIs decreased. A supple-
mental analysis showed that estimates of temporal variability were
modestly related to gray matter tissue composition (see Table 4 in

the online supplemental material). We thus reran our analyses
while controlling for gray matter tissue composition in each
sphere. Results indicated that the findings with right dmPFC and
left MTG remained significant and marginally significant, respec-
tively; the vlPFC trend did not remain marginally significant. Gray
matter composition was directly associated with temporal variabil-
ity in vlPFC and was inversely related to temporal variability in
dmPFC; gray matter composition was unrelated to temporal vari-
ability for all other ROIs in addition to also having no relationship
with age. Detailed statistical output of analyses concerning gray
matter composition can be accessed in the online supplemental
material (see supplemental Tables 5 and 6). These results suggest
that age is accompanied by more stable, consistent brain activation
in fronto-temporal ROIs implicated in emotion regulation, even
when controlling for gray matter composition.

Discussion

Variability is a critical feature of neural activity that has been
previously overlooked in developmental neuroscience studies of
emotion regulation. The present study sought to quantify two types
of within-individual neural variability during emotion regulation—
temporal and spatial—and relate them to age and individual dif-
ferences in affective experience. We found that age was associated
with spatial variability in SPL, whereas affective experience was
associated with spatial variability in vlPFC. By contrast, age was
linked with temporal variability in MTG and dmPFC. These results
help characterize how spatial and temporal profiles of brain activ-
ity give rise to emotion regulatory abilities in youth and inform
future work aimed at unpacking the role of variability in affective
neurodevelopment.

Spatial Variability Marks Selective Specialization

We found that less spatial variability in right vlPFC activation
was associated with lower levels of average, self-reported negative
affect during emotion regulation. We further observed that age
predicted less spatial variability in left SPL activation during
emotion regulation. Validation analyses revealed that ROIs with
less spatial variability tended to have highly active voxels tightly
coalesced around a central focal point and less activation else-
where. These results imply that the development of emotion reg-
ulation is supported by a shift toward decreased variability and
increased spatial specialization in the prefrontal and parietal cor-
tices. Although the cross-sectional nature of the present study
design precludes formal testing of this hypothesis, it may motivate
future longitudinal work aimed at interrogating this possibility.
Overall, our findings imply features about mechanistic processes
of emotion regulation that are relevant for a variety of theoretical
viewpoints.

The present results enhance our understanding of the roles that
vlPFC and SPL play in supporting the development of emotion
regulation. Prior work suggests that these two regions are recruited
to help meet the working memory and attentional demands of
cognitive reappraisal (Buhle et al., 2014; Ochsner et al., 2012).
Developmentally, both have also been linked to age-related im-
provements in cognitive control and emotion regulation (Durston
et al., 2006; Silvers et al., 2016). The present findings are of
tentative use for existing theories that posit that age-related

Table 2
Fixed Effects of Latent Temporal Variability and Moderators
from the Measurement Model

ROI 
 SE p SD(ri)

L dlPFC .435 .010 .076
Age �.002 .003 .452
Negative affect .031 .019 .107

R dlPFC .567 .015 .110
Age �.006 .006 .280
Negative affect �.010 .026 .690

R vlPFC .456 .013 .088
Age �.009 .005 .092†

Negative affect .041 .029 .153
R dmPFC .529 .011 .080

Age �.010 .004 .005�

Negative affect .032 .023 .160
L MTG .439 .011 .068

Age �.007 .004 .079†

Negative affect .034 .022 .132
L SPL .542 .011 .081

Age .001 .004 .801
Negative affect .028 .024 .243

R SPL .534 .013 .096
Age �.006 .005 .243
Negative affect .015 .031 .614

Note. Age and negative affect respectively refer to each participant’s age
and average rating of negative affect during during reappraise (‘far’) trials
(both mean centered). The 
s next to each region of interest (ROI) label
represent fixed effects of latent temporal variability for those regions. The

s below them represent the respective associations between age and
experiences of negative affect and each participant’s specific latent tem-
poral variability for each ROI. SD(ri) represents the standard deviation of
between person residuals in predicting individual specific latent temporal
variability from fixed effects of latent temporal variability, age, and aver-
age negative affect. Robust standard errors (SE) are reported. dlPFC �
dorsolateral prefrontal cortex; vlPFC � ventrolateral prefrontal cortex;
dmPFC � dorsomedial prefrontal cortex; MTG � middle temporal gyrus;
SPL � superior parietal lobule.
† p � .10. � p � .05.
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changes in self-regulation hinge, in part, upon the ability to suc-
cessfully deploy a burgeoning repertoire of executive functions
(see Guassi Moreira & Silvers, 2018 and Calkins & Marcovitch,
2010 for overviews). Our results may help to explain prior work
demonstrating that youth use effortful emotion regulation strate-
gies like reappraisal less frequently and less effectively than older
individuals (Mischel & Baker, 1975; Mischel & Mischel, 1983;
Silvers et al., 2016). Although prior work has tied the magnitude
of prefrontal and parietal activation to developmental differences
in emotion regulation (McRae et al., 2012; Silvers et al., 2015,
2016), here we have done the same with variability of activation in
these regions. Although we found initial evidence that decreased
spatial variability is associated with more successful emotion
regulation (i.e., greater ability), it is important to note that we did
not link neural variability to youth’s trait-like tendency to engage
in emotion regulation (Silvers & Moreira, 2017). This possibility is
worth consideration for future research, but our data can only fuel
speculation on this topic. Regardless, the present findings suggest
that prefrontal and parietal specialization is also important to
consider, in conjunction with overall activation, when character-
izing the neurodevelopment of emotion-regulatory abilities.

Outside of vlPFC and SPL, most other regions (e.g., dlPFC,
dmPFC) displayed diffuse spatial topographies during reappraisal
and spatial variability did not differ as a function of age or
affective experience. This suggests that age and affective experi-
ence covary with spatial variability in a selective subset of regions.
This could indicate that (in youth, at least) certain cognitive
features of regulation rely on diffusely distributed patterns of
activity, whereas other features are instead dependent on a selec-
tive set of modular, specialized clusters of activity. If such is the
case, it is interesting to consider why different patterns were
observed in vlPFC and SPL than other brain regions. Given that
these two brain regions have been particularly strongly linked with
the variant of reappraisal employed here (distancing; Ochsner et
al., 2012), this could suggest that spatial variability is an indicator
of age or individual differences only in brain regions most crucial
for performing a given cognitive process. This raises the question
of whether distinct or similar patterns of spatial variability might
be observed for other psychological processes that change during
childhood and adolescence. For example, if youth were asked to
complete a theory of mind task (e.g., Spunt & Adolphs, 2014), we
might expect age and task performance to be associated with less
spatial variability in cortical midline structures like dmPFC that
support social cognition (Blakemore & Mills, 2014; Pfeifer &
Peake, 2012) but not necessarily in vlPFC and SPL. Although
testing such possibilities is outside of the scope of the present
study, the findings presented here may motivate future research
aimed at examining how changes in spatial variability contribute to
a range of neurodevelopmental processes in social–cognitive and
affective domains.

Another notion raised by our results—consistent with a dy-
namic systems view of development that espouses change over
time occurs across a multilevel series of self-organizing systems
(Smith & Thelen, 2003)—is that each ROI represents a unique hub
in an emotion regulation network, functions optimally at different
amounts of within-individual variability, and follows its own de-
velopmental trajectory, nested within a broader hierarchical trajec-
tory (e.g., a brain network’s trajectory or the whole brain’s trajec-
tory). This notion follows from the fact that some of our ROIs were

more variable than others and not all showed associations with age.
Accordingly, the optimal levels of variability in each hub may be
age-dependent, such that more variability is necessary at some
ages and not during others. If such a ‘variability-architecture’ were
to be confirmed by additional work, it would lend further support
to extant neurodevelopmental theories of emotion regulation that
posit regulation is comprised of emergent, but ultimately separa-
ble, psychological modules (Guassi Moreira & Silvers, 2018).
Future research can directly test this by comparing ROI variability
between youths and adults to identify the optimal, or normative,
level of variability for each ROI, while also examining how such
variability changes over the course of development to elucidate
whether ROIs are similar or disparate in their maturational trajec-
tories. Testing such possibilities, to which our data cannot cur-
rently speak to, encapsulates the next step in a line of research
examining how spatial variability characterizes the functional ar-
chitecture of a range of developmental phenotypes.

Temporal Variability Reflects Increased Stability
With Age

We found that older individuals, relative to younger ones,
showed decreased variability in neural responding over the course
of the emotion regulation task. Specifically, age was associated
with marginally less variable activation in left MTG, and signifi-
cantly less variability in dmPFC. Changes in dmPFC variability
are noteworthy when considering that mentalizing processes are
required to track one’s self-regulation progress during reappraisal
and other effortful emotion regulation strategies (Ochsner et al.,
2012). Decreased temporal variability in dmPFC may be linked to
developmental differences in maintaining goal states and self-
monitoring, both of which are needed to guide future action
(Kurby & Zacks, 2008; Northoff & Bermpohl, 2004; Richmond &
Zacks, 2017). Greater temporal variability in dmPFC at younger
ages could reflect an unstable or fluctuating ability to implement
emotion regulation (Pfeifer & Peake, 2012). If this is the case, we
might hypothesize that as individuals mature, their internal repre-
sentations of self-regulatory states stabilize and dmPFC variability
decreases. Despite being unable to empirically verify the plausi-
bility of this notion with our current data, future work using
additional experimental paradigms in the scanner may be able to
do so.

Another explanation for the temporal variability results has to
do with the social nature of the stimuli used in the present study.
Specifically, our age-related findings in dmPFC may be partly
explained in terms of ongoing maturation of the social brain
(Blakemore & Mills, 2014; Pfeifer & Blakemore, 2012; Pfeifer &
Peake, 2012). Social–cognitive processes change dramatically
during the first two decades of life, especially from late childhood
through adolescence (Choudhury, Blakemore, & Charman, 2006;
Eisenberg, Spinrad, & Knafo-Noam, 1998; Richardson et al.,
2018). Such behavioral development has been linked to structural
and functional maturation of cortical midline structures, including
dmPFC (Blakemore & Mills, 2014; Mills, Goddings, Clasen,
Giedd, & Blakemore, 2014; Mills, Lalonde, Clasen, Giedd, &
Blakemore, 2014). It is possible that our age results in dmPFC
were observed because the pruning of dmPFC pathways promotes
a less variable pattern of BOLD activation across repeated in-
stances of regulation (Blakemore & Mills, 2014; Mills, Lalonde, et
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al., 2014; Pfeifer & Blakemore, 2012; Somerville et al., 2013;
Sowell et al., 2001).

Our findings demonstrating an inverse relationship between age
and temporal variability are simultaneously consistent and at odds
with the existing literature. On the one hand, some prior research
in adult samples suggests that greater temporal variability is an
adaptive feature of neural responding because it endows the brain
with the ability to easily access different “network states” that may
be needed to complete mental tasks (Garrett, Kovacevic, Mcintosh,
& Grady, 2010, 2011; Petroni et al., 2018). Thus, one might
predict that age would predict more flexible (i.e., variable) re-
sponses. On the other hand, one could argue that older adolescents
may simply need to exert less effort while regulating and display
reduced temporal variability across repeated instances of regula-
tion as a result. Indeed, our data appear to support this latter
account—older individuals showed less temporal variability on a
trial-by-trial basis than younger individuals in certain regions,
consistent with prior developmental findings in other domains
(Koolschijn et al., 2011; Ordaz et al., 2013). Our findings might
also be explained by prior work showing that age-related trajec-
tories of temporal variability in the brain do not follow a single
pattern, but instead show regionally specific increases and de-
creases in variability (Nomi et al., 2017; Petroni et al., 2018). This
supports the notion that development is possibly characterized by
a process of ‘variability tuning,’ where an intermediate amount of
variability is necessary for the execution of psychological tasks,
but what is classified as “intermediate” varies across brain regions.
Our own findings cannot directly confirm or falsify this possibility,
but the notion is supported by recently published work which
espouses a ‘goldilocks’ view of variability (insufficient or exces-
sive variability is detrimental; Dinstein, Heeger, & Behrmann,
2015).

Generalizing to Other Emotion Regulation Strategies

Though we used fMRI data in conjunction with a cognitive
reappraisal task, one strength of the methods and framework
introduced here is that they can be applied across a range of
emotion regulation paradigms. As we mentioned earlier, humans
have an entire toolbox of emotion regulation strategies at their
disposal (Braunstein et al., 2017), and cognitive reappraisal is but
one strategy. Children and adolescents are able to use other strat-
egies such as distraction and suppression, in addition to ‘implicit’
emotion regulation skills (e.g., reversal learning, extinction;
Guassi Moreira & Silvers, 2018). Future work ought to directly
compare developmental trajectories related to neural variability
across multiple emotion regulation strategies in order to test
whether the present results are unique to reappraisal or generalize
to other strategies. For example, one could examine whether neural
estimates of spatial and temporal variability change with age and
affective experience during emotional suppression in similar or
different ways as they do during reappraisal (Goldin, McRae,
Ramel, & Gross, 2008; Phan et al., 2005).

Limitations and Future Directions

This study is not without limitations, especially since it is the
first to examine neural variability in the context of emotion regu-
lation development. First and foremost, because we relied on a

cross-sectional design, we cannot characterize true neurodevelop-
mental trajectories without longitudinal data (e.g., Singer & Wil-
lett, 2003; Snijders & Bosker, 1998). Relatedly, without a group of
younger children and adults, it is hard to make inferences about
developmental processes that extend prior to late childhood and
beyond the adolescent years (e.g., a developmental switch; Casey,
2015; Gee et al., 2013) Another limitation lies in our use of
measurement models, which provide a simple way to summarize
our indices of variability across each ROI, but (possibly incor-
rectly) assume that the microarchitecture of different cortical
spheres is similar in nature.

The ROIs used in the present study were drawn from a meta-
analysis that was nearly exclusively based on adult studies. This
methodological choice was because no meta-analyses based ex-
clusively on pediatric studies exist (Guassi Moreira & Silvers,
2018), and that doing so provided us with a way to independently
define ROIs (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009).
Unfortunately, this means that the ROIs studied here may not be
representative of the precise ROIs that youth use when engaging in
emotion regulation. Indeed, it is possible that children use different
brain regions than adolescents or adults in order to accomplish the
same emotion regulation goals, although it is worth noting this is
unlikely given that no prior data to our knowledge have consis-
tently observed activations in children in brain regions not ob-
served in adults. Future work in larger samples might opt to
sidestep this issue by defining ROIs in a subset of their sample and
using the rest of the sample for independent analyses or by col-
lecting additional runs of an emotion regulation task specifically
devoted to ROI localization and identification.

An additional, infrequently discussed limitation revolves around
the notion that the scanner is anxiety-provoking and thus consti-
tutes a unique affective context (Eatough, Shirtcliff, Hanson, &
Pollak, 2009; Galván, Van Leijenhorst, & McGlennen, 2012). If
this were the case, it could impact regulatory processes in ways
that obfuscate the true, ecological nature of youth’s emotion reg-
ulation. That said, care was taken to reduce this possibility in the
present study by familiarizing participants with the scanning en-
vironment through the use of mock scanning.

Given that our study was the first to examine variability in
youth’s neural responses during emotion regulation, we opted for
an fMRI paradigm that was highly consistent with those previously
used in youth (McLaughlin, Peverill, et al., 2015; McRae et al.,
2012; Silvers et al., 2015). This decision led us to exclusively
examine regulation of negative emotion (inclusive of multiple
negative emotional states). It is possible that our results might not
generalize to regulation of other emotional states and categories.
Indeed, other work has suggested that age-related differences in
the behavioral and neural correlates of emotion regulation vary
across different types of emotional stimuli (Silvers et al., 2012,
2014). Future work ought to examine whether the results reported
herein not only generalize across different variants of reappraisal
and related emotion regulation strategies, but also across different
emotional states.

Last, our study was exploratory by definition because it was the
first of its kind. The present results do not confirm any hypotheses,
but rather generate novel ones to be tested in future studies. This
limitation, like the others previously described, must be taken into
careful consideration when evaluating the impact of our findings
with respect to the broader literature.
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Concluding Remarks

Variability is a fundamental feature of neurodevelopment. Our
results suggest that variability is also central to the acquisition of
effective emotion regulation. This investigation was the first to
incorporate neural variability into developmental research on emo-
tion regulation. We showed that age was associated with increas-
ing spatial focalization of activity in some brain regions, whereas
other regions exhibited spatial topographies that were age- and
experience-invariant. We also showed that age is marked by sta-
bility of neural responses over the course of repeated emotion
regulation. Overall, this work contributes toward identifying the
mechanisms that encode the neural bases of emotion regulation in
youth.
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