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ARTICLE INFO ABSTRACT

The human brain is remarkably plastic. The brain changes dramatically across development, with ongoing
functional development continuing well into the third decade of life and substantial changes occurring again in
older age. Dynamic changes in brain function are thought to underlie the innumerable changes in cognition,
emotion, and behavior that occur across development. The brain also changes in response to experience, which
raises important questions about how the environment influences the developing brain. Longitudinal functional
magnetic resonance imaging (fMRI) studies are an essential means of understanding these developmental
changes and their cognitive, emotional, and behavioral correlates. This paper provides an overview of common
statistical models of longitudinal change applicable to developmental cognitive neuroscience, and a review of
the functionality provided by major software packages for longitudinal fMRI analysis. We demonstrate that there
are important developmental questions that cannot be answered using available software. We propose alter-
native approaches for addressing problems that are commonly faced in modeling developmental change with
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1. Introduction

Developmental science is concerned with understanding systematic
changes over time and characterizing the underlying dynamics that
produce those changes (Ford and Lerner, 1992). Variability in emotion,
cognition, behavior and neurobiology over time is thought to reflect
maturational processes that unfold as a result of ongoing interactions
between people and environmental context across development that
reflect fluctuations in the relationships among factors occurring at
multiple levels of organization (Lerner, 2001; Lerner and Castellino,
2002). Central goals in studies of development are to understand how a
particular process or characteristic changes over time within in-
dividuals and to identify factors that predict variation, or individual
differences, in that change process. In developmental cognitive neu-
roscience, the questions of interest typically focus on changes in neural
structure or neural function over time and how those neural changes
influence developmental change in other domains, including behavior,
cognition, emotion, or health. These questions are inherently multi-
variate in nature—in other words, they involve processes that involve
multiple systems or levels of organization. To date, however, the
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models available to the neuroimaging community have been limited in
the range of questions to which they can be applied regarding how
changes in neural function relate to development in other domains. In
this paper, we review current methods for examining longitudinal
change in fMRI data and describe a novel approach we are developing
to allow more complex multivariate growth models to be applied to
questions in developmental cognitive neuroscience.

Longitudinal studies that involve the collection of MRI data at
several time points have become increasingly popular in developmental
cognitive neuroscience because they allow researchers to study and
track changes in brain structure and function over time within in-
dividuals. Longitudinal designs provide numerous advantages over
cross-sectional studies for estimating changes over time and identifying
predictors of change, including greater ability to distinguish between
and within-individual variation(Rogosa et al., 1982). However, analysis
of individual differences in longitudinal data can be challenging, par-
ticularly in studies involving three or more time points of data collec-
tion. For instance, researchers may be interested in modeling multiple
forms of change (e.g., linear, quadratic, logarithmic, etc.), or in ap-
plying more exploratory, non-polynomial models of change (such as
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Fig. 1. Examples of growth models showing inter-individual variability in growth: a) linear, b) quadratic, ¢) cubic and d) piecewise growth.

latent basis models; Grimm et al., 2011) while accounting for sub-
stantial individual variation in change between individuals (Dean et al.,
2009). Often, procedures are required to address missing data that
commonly result from subject dropouts (e.g., Matta et al., in this issue),
and to include sources of measurement error in models (e.g. caused by
differential subject motion across time, changes in data processing
methods, scanner upgrades or hardware changes) that can bias esti-
mates of expected change. Changes in task performance extraneous to
neural development, such as practice effects, can also be associated
with time (Salthouse, 2014), and it can be challenging to disentangle
the effects of interest from these confounding factors. Taken together,
the analysis of longitudinal fMRI data is more complex than typical
cross-sectional analyses, and requires more advanced methods to ef-
fectively model processes involving change over time.

To date, the implementation of these more advanced approaches
has been limited by the lack of available programs to model long-
itudinal fMRI data. At present, widely-used software programs for
processing task-related fMRI data rely predominantly on the general
linear model (GLM) approach to analyze data (Poline and Brett, 2012).
The GLM is a broad class of models that assumes a linear relationship
between one (or more) dependent variables and one (or more) in-
dependent variables. In fMRI analyses, the GLM estimates the BOLD
time series as a linear combination of several signal components and
tests whether activity in a voxel is linked to any known input function
or stimuli (Lindquist, 2008). The GLM framework can be used to con-
duct analysis of variance (ANOVA), analysis of covariance (ANCOVA),
multiple ANOVA and ANCOVA, and ordinary least squares (OLS) re-
gression. Although each of these approaches have been developed and
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adopted in parallel to address distinct research questions (e.g., ANOVA-
based methods are typically used in experimental designs with cate-
gorical predictors and regression in designs with continuous pre-
dictors), these methods are computationally equivalent (Howell and
Lacroix, 2012) and have similar limitations in modeling longitudinal
data.

In this paper, we provide an overview of major statistical models of
longitudinal change that would be useful to apply to research questions
in developmental cognitive neuroscience to evaluate changes in brain
structure and function over time, identify predictors of those develop-
mental trajectories, and to use change over time itself as a predictor of
behavioral outcomes. We review functionality provided by major soft-
ware packages for longitudinal fMRI analysis and describe what ques-
tions can and cannot be answered by these packages. Finally, we de-
scribe a novel approach to voxel-wise modeling that can facilitate
iterative model experimentation and demonstrate its use on an example
longitudinal fMRI data set.

2. Developmental questions of interest in cognitive neuroscience

Developmental changes in neural and behavioral processes can
unfold in a variety of different ways (Ram and Grimm, 2015), and the
pattern of these changes may vary across different metrics of neural
development, including measures of brain structure, task-based func-
tional activation and connectivity, and functional connectivity mea-
sured at rest. Initially, much developmental cognitive neuroscience
research examined developmental differences in these metrics using
cross-sectional samples that spanned a wide age range, but more
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recently the field has begun systematic examination of how these as-
pects of neural structure and function change across development using
longitudinal data. These changes can take a variety of forms (Kail and
Ferrer, 2007). Change can occur as linear increases or decreases, a
pattern frequently described, for example, in theoretical models of the
development of cognitive control and maturation of prefrontal cortex
(PFC) regions that support these control processes (Steinberg, 2010).
Evidence from recent longitudinal studies, however, suggests that the
developmental trajectory of activation during an inhibitory control task
is non-linear and varies across regions of the PFC, with decreases in
activation observed into adolescence that level off by early adulthood in
dorsolateral PFC regions involved in executive control and increasing
activation in error processing regions, including dorsal anterior cingu-
late, across adolescence that levels off in early adulthood (Luna et al.,
2015; Ordaz et al., 2013a,b). Indeed, developmental change in neural
structure and function in other domains frequently follows a variety of
non-linear patterns. These can include, among other forms: 1) quadratic
patterns of growth, where a behavior or pattern of neural activity either
emerges during a specific developmental period and then declines, or
disappears during a specific period and then reappears later; 2) loga-
rithmic changes that reflect more rapid developmental change at earlier
ages that slow and level off at later ages; 3) cubic patterns, character-
ized by growth followed by decline (or vice versa) that occur at unequal
rates; and a variety of other non-linear patterns (e.g., transition models,
where a linear slope changes in magnitude at a discrete point in de-
velopment) (see Fig. 1 for examples) (Kail and Ferrer, 2007). Quadratic
patterns have been described in task-based fMRI studies for neural and
behavioral processes that are at their greatest level in adolescence, and
are either at much lower levels or not observable at all in childhood and
adulthood. One example of this pattern is reward sensitivity and ventral
striatum activation to reward, each of which are higher during ado-
lescence than either childhood or adulthood, and have been observed in
both cross-sectional and longitudinal studies (Braams et al., 2015a;
Galvan et al., 2007). Logarithmic patterns have been documented in
developmental studies of white matter microstructure, particularly for
association fibers (e.g., fronto-temporal tracts including the cingulum
and uncinate fasciculus), where growth is more rapid earlier in devel-
opment and levels off in late adolescence and early adulthood (Lebel
and Beaulieu, 2011). Finally, cubic patterns have been observed in
longitudinal studies of cortical structure, whereby cortical thinning is
present during childhood, accelerates during adolescence, and stabi-
lizes by early adulthood (Tamnes et al., 2017). A variety of more
complex patterns are also possible; for example, rapid development in
neural circuits can produce relatively rapid changes in functioning,
where there is a sudden shift in ability or behavior (Ram and Grimm,
2015). Such patterns might be expected, for example, for domains that

Table 1
Capabilities of different statistical models.
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exhibit critical periods of development where environmental input
plays a strong role in shaping skill acquisition during circumscribed
windows of time (e.g., phoneme discrimination; Kuhl et al., 2003).
However, few longitudinal neuroimaging studies have examined the
developmental changes in neural circuitry that underlie these patterns
of sudden developmental change.

Longitudinal methods can also address a variety of questions about
atypical patterns of developmental change that result, for example,
from environmental experiences (e.g., exposure to toxins or to early-life
stress), neurodevelopmental disorders, or psychopathology. Although
atypical neural development can take a variety of forms, patterns of
particular interest in developmental cognitive neuroscience include
precocious development, where development occurs more rapidly than
average for some individuals; delayed development, where develop-
mental processes occur more slowly than expected; halted develop-
ment, which involves maturation that stops after a period of typical
development; failure to mature, reflecting an absence of developmental
change; and ectopic development, where maturation occurs but is un-
expected (Di Martino et al., 2014). Finally, the implications of devel-
opmental trajectories of neural structure, function, and connectivity for
behavior and adaptive functioning are of central interest to the field.
Exploring these questions introduces a variety of statistical challenges
(e.g., examining relative model fit across groups; examining parallel or
sequential longitudinal changes in brain and behavioral measures) that
have yet to be resolved in standard neuroimaging software packages.

3. Statistical models that can be applied to these developmental
questions

There are many statistical approaches that can be used to model
within and between individual differences in change over time, which
have arisen from distinct statistical traditions. Most longitudinal models
may be classified as deriving from either the generalized mixed linear
modeling (GMLM) framework or the structural equation modeling
(SEM) framework. The GMLM is an extension of the GLM (described
above), with the generalized referring to a broader class of models that
all retain the same form of the linear model (i.e. Y = b0 + b1 *X + ry)
but allow for dependent variables with non-linear distributions (such as
counts, binomial, and exponential distributions, among others) (see
McCulloch, 2003). The mixed refers to the inclusion of random effects,
which model variances and covariances among the coefficients in the
linear model according to some unit of clustering (such as repeated
observations clustered within individuals). There is also a broad class of
longitudinal models that rely on the SEM framework that model latent
(i.e. unobserved) variables as arising from common covariances be-
tween observed variables, as well as the structural relations between

Statistical Model Between-group Rank-order Between Within Predictors of within-  Correlations between  Latent Change as a
mean differences  change individual individual individual change growth processes Groups predictor
change change over time
Independent Samples T- X
test
ANOVA X
(Multiple) Regression, X X
General Linear
Modeling
Repeated Measures X X X
ANOVA
Auto-regressive panel X X X
models
Latent change score X X X X X X X
Multilevel growth models X X X X X
Latent growth curve X X X X X X X
Growth mixture model X X X X X X X X
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them. Both SEM and GMLM models are typically estimated using
maximum likelihood. Table 1 provides an overview of some commonly
used models and their capabilities as described in this section. Given
that extensive scholarship has examined the relative merits and weak-
nesses of each of the modeling approaches we review here, we provide
a brief summary of each approach, illustrations for how each type of
model can be applied to longitudinal data, and point readers to seminal
papers and reviews of each model where applicable.

To date, the vast majority of studies examining longitudinal change
in developmental cognitive neuroscience have relied on GLM or GMLM-
based models. GLM-based models, which estimate changes over time in
the mean level of a particular behavior or neural process, have been
used to determine whether changes in neural structure—modeled as
difference scores from one time point to another—predict changes in
working memory (Tamnes et al., 2013); or to determine if brain con-
nectivity at one time point can predict alcohol use at a later time point
(Peters et al., 2016a). These and other GLM-based methods (e.g., in-
dependent samples t-tests and ANOVA) may be appropriate for asses-
sing mean level or rank order (i.e., between-individual) changes, and
for identifying average developmental patterns of change over time. In
longitudinal studies with two time points, GLM-based methods can also
be used to address how an individual’s rank order changes between
time points (i.e. how their level on a variable might change relative to
others in the sample) by treating the initial measurement occasion as a
covariate (e.g., regressing time 2 on time 1 and additional covariates of
interest). Repeated-measures ANOVA is one example of how this type of
GLM approach can be applied to longitudinal data. In developmental
cognitive neuroscience, this method has been used, for example, to
identify predictors of change in reward sensitivity across two time
points (Urosevic¢ et al., 2012). Related SEM approaches such as auto-
regressive and cross-lagged models can estimate rank-order changes
and reciprocal associations between variables across time (Selig and
Little, 2012). Collectively, GLM and their SEM-based equivalents sup-
port inferences about either cross-sectional differences in the mean of
an outcome over time, or rank-order change between two time points
(i.e., between-individual change), but are not appropriate for esti-
mating within-individual changes, or between-individual differences in
change over time. A general shortcoming of these approaches is that
they conflate within and between-person associations (such as in cross-
lagged panel models; Berry and Willoughby, 2016; Hamaker et al.,
2015), and as such can provide misleading information about change.
This results in a more general tendency to ignore common correlates of
between-person differences, and to obtain misleading information
about the directionality of associations (for an excellent illustration of
this problem see Bailey and Littlefield (2016).

Increasingly, GMLM methods are being used to estimate within-in-
dividual change over time in developmental cognitive neuroscience.
Multilevel growth models (also referred to as hierarchical linear growth
models), probably the most common variant of GMLM, can estimate
within-individual change over time, along with between-individual
differences in mean levels over time and the predictors of these dif-
ferences (Curran, 2003; for a general overview of multilevel models see
Snijders and Bosker, 2011) Such models have been used, for example,
to examine developmental changes in cortical thickness among children
with and without attention-deficit/hyperactivity disorder (Shaw et al.,
2006) and to evaluate whether brain activation during a cognitive
control task is associated with developmental change in behavioral
performance on the task over time (Ordaz et al., 2013a,b). They have
also been used to analyze developmental change in neural activity over
multiple longitudinal assessments during a narrative comprehension
task, and to determine whether reading comprehension is associated
with these neural changes (Szaflarski et al., 2012). In short, GMLM
methods allow researchers to characterize average changes in brain
structure and function over time, and to predict between- and within-
individual differences in those patterns. These models are particularly
useful for estimating change across three or more measurement
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occasions.

Numerous other analytic approaches exist for analyzing long-
itudinal developmental data, though these have yet to be applied sys-
tematically to research questions in developmental cognitive neu-
roscience (see King et al. (under review) this issue). These are largely
based in SEM, and allow researchers to test hypotheses that are un-
available in the GMLM framework. A variety of terms have been used to
describe these SEM-based approaches, but most include the terms “la-
tent” and “growth model.” There are some similarities between GMLM
approaches and latent variable growth models (Curran, 2003), but
SEM-based approaches allow a much broader array of models (and thus
hypotheses) to be tested. The most critical difference is that latent
variable growth models estimate change over time as a latent variable,
which allows individual differences in growth to be correlated with (or
predict) other variables. A broad overview of the types of longitudinal
models available in the SEM framework is provided by Newsom (2015).

For example, in SEM-based models growth can be modeled not only
as an outcome but also as a predictor of other processes, as in parallel
process latent growth models (Cheong et al., 2003). Such a model could
be used, for example, to examine not only how changes in exposure to
stressful experiences over time predict changes in brain structure and
function, but also to determine whether those changes in neural pro-
cesses predict subsequent increases in symptoms of anxiety or depres-
sion. Neural changes across numerous time points could be examined as
outcomes, predictors, correlates of other change processes, moderators,
or mediators in SEM-based latent growth models. Other forms of
longitudinal SEM-based models can be applied to determine whether
there are discrete sub-groups that display different kinds of change over
time, such as latent trajectory, growth mixture models, and latent
transition models. Such models could be used to determine whether
different underlying trajectories of development exist within a sample,
reflecting various patterns of typical and atypical development (Di
Martino et al., 2014), whether different trajectories of improvement
following an insult or injury occur, or to characterize how individuals
move between latent subgroups over time (Chow et al., 2013; Dolan
et al., 2005); critically, such models can also be used to identify pre-
dictors of those disparate patterns over time. There are many other
types of change models that rely on SEM-based approaches (see Ram
and Grimm, 2015 or King et al. (under review) for a thorough discus-
sion of SEM based models for longitudinal change). It is worth noting,
however, that none of these models can be estimated in any of the
widely used fMRI analysis software packages.

Analytic strategies using multilevel growth models frequently rely
on model comparison to test hypotheses; in other words, two or more
models that represent hypotheses of interest are estimated and com-
pared to determine which model best describes the data. There is no
universal generally accepted method for comparing models, and nu-
merous types of model fit statistics can be computed to do so. Dozens of
model fit statistics have been developed for making these types of
comparisons. Each of these fit statistics varies in the underlying sta-
tistical approach for estimating fit and the types of penalties applied for
increasing the number of terms in the model, among many other dif-
ferences. Commonly used fit statistics include the Bayesian information
criterion (BIC; Kass and Wasserman, 1995) and the Akaike information
criterion (AIC; Akaike, 1973) each of which take into account the
number of parameters in the model when assessing model fit (Braams
et al., 2015b; Ordaz et al., 2013b; Peters et al., 2016b). These fit sta-
tistics can be compared across models to identify the model that pro-
vides the best fit to the data. Nested models form a particular class of
models where the first (nested) model can be obtained from the second
model by constraining parameters of the second model (e.g., a model
estimating a linear effect of time is nested within a model that includes
both linear and quadratic effect of time; as a result, the relative fit of
these models can statistically compared). Likelihood ratio tests between
nested models can be used to determine if one model provides a sig-
nificantly better fit to the data than another model. In addition to these
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types of tests, researchers often use the heuristic of parsimony in order
to select the best fitting model that is not over-fitted to the specific
dataset. Because of the complexity of performing model comparison
over tens of thousands of voxels representing different regions of the
brain, neuroimaging software does not generally support these types of
model fit statistics.

4. Review of existing fMRI longitudinal analysis software

Following pre-processing and pre-whitening to remove noise and
autocorrelation (Huettel et al., 2014; Poldrack et al., 2011), common
software packages such as the FMRIB Software Library (FSL), Statistical
Parametric Modeling (SPM), and Analysis of Functional Neuroimages
(AFND) rely predominantly on a GLM approach, albeit with some ex-
tensions, to model brain responses over time. This approach allows for
the estimation of t-tests, ANOVA, ANCOVA, and multiple regression. A
simple single-parameter GLM can be modeled by the following equa-
tion:

y()=a*x({t)+ b+ e(t)

Here, the data from each voxel y(t) is modeled as a linear function of
a stimulus being presented across a given voxel timecourse x(t), as well
as an intercept b and a residual error (noise) term e(t). Because the
BOLD response occurs after the presented stimuli and is nonlinear, the
stimulus is convolved with a hemodynamic response function. Note that
the shape of this function itself may vary across individuals. The GLM
estimates the effect of the stimulus condition a on the BOLD response by
minimizing e(t). Multiple stimuli timecourses can be modeled simulta-
neously. Because each voxel’s timecourse is modeled independently,
this approach is vulnerable to type I errors introduced due to multiple
comparison. Therefore, correction for multiple comparisons is typically
performed following model estimation by analyzing clusters of voxels
which are activated beyond a predetermined threshold using statistical
testing derived from Gaussian random field theory (Friston et al., 1994;
Hayasaka and Nichols, 2003), although recent simulations suggest that
this approach can inflate false positives, particularly in some software
packages, as compared to permutation testing approaches (Eklund
et al., 2016).

The major software packages implement voxel-wise univariate
modeling of the BOLD signal using a multi-stage process. The first-level
models, executed on each individual run for each participant, assume
fixed effects only — that is, the parameter of interest a is assumed to be
the same for every participant. This approach provides the analyst with
a single fixed effect estimate of a stimulus condition on BOLD response
for each subject, above and beyond the noise included in the BOLD
signal. The estimates derived from the first-level models are then
“carried up” to higher-level models in subsequent mixed-effects ana-
lyses (Holmes and Friston, 1998). Modeling the random effect of in-
tercept (i.e., the average task-related effect for each participant) is an
extension to the GLM framework in fMRI analysis that is necessary to be
able to extrapolate results beyond the study sample (Mumford and
Poldrack, 2007). In this two-stage estimation procedure, subjects can be
added to the analysis without having to re-run all the first level ana-
lyses, reducing execution time. This approach is often more practical
than running a single multilevel model and has been shown to be sta-
tistically equivalent (Friston et al., 2005).

Although the GLM framework has been instrumental in the analysis
of fMRI task data to date, it imposes numerous assumptions about the
data structure and therefore limits the developmental questions that
can be addressed. These limitations, reviewed in depth in a more gen-
eral context by Chen et al. (2013), are as follows:

1. From ANCOVA, these models hold an assumption of sphericity,
which requires that the variances of the differences between time
points be equal across all pairwise combinations. Correspondingly,
more flexible, alternative covariance matrices, such as
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autoregressive, compound, and fully unstructured covariance,
cannot be specified. These covariance structures are frequently used
in longitudinal models of behavioral factors (Raudenbush and Bryk,
2002).

. While random intercepts are necessary for generalizability, it is not
possible to specify random slopes (i.e., individual differences in
change over time across multiple measurement occasions).
Accordingly, meaningful residual variance cannot be modeled,
which limits the capacity of GLM for addressing questions of change
over time. More specifically, it is not possible to model multiple
continuous within- and between-individual predictors, nor specify
within-level and cross-level interactions to explain patterns of
change over time (i.e., a random slope of time).

. It is difficult to deal with missing data. This may require that im-
putation of the data be performed before model fitting, although this
functionality is not available in most fMRI software packages.

These assumptions limit the flexibility of the GLM in developmental
research. The first assumption of sphericity stems from the multi-level
estimation procedure. If this assumption is not met, this can lead to
inflation of both Type I and Type II errors (e.g., Chen et al., 2013). This
means that estimates may be biased, although the degree to which they
are biased depends on how auto-correlated the data actually are. In
other words, when within-individual values are correlated more
strongly with values at time points that are closer in time as opposed to
farther away in time (i.e., auto-correlation), numerous assumptions are
violated that can introduce bias into estimates that varies in magnitude
depending on the magnitude of auto-correlation. The second assump-
tion makes the GLM unsuitable for estimating variance in trajectories of
change (such as rates of growth, or differences in the shape of growth
curves over time), which are important outcomes in developmental
processes (see Section 2). The third assumption is problematic in
longitudinal research; as the number of scheduled scans per subject
increases, it becomes highly likely that some scans will be unusable or
be missed, necessitating modeling approaches that are robust to missing
data.

Given these limitations in existing software packages, longitudinal
fMRI studies that have used more complex longitudinal models have
typically done so by modeling the BOLD signal using some non-fMRI
statistical analysis package in one or more regions of interest (ROIs).
For example, Ordaz et al. (2013a,b) used R to model developmental
trajectories in brain regions within known circuits involved in aspects
of inhibitory control (Ordaz et al., 2013a,b). This ROI approach limits
analysis to specific regions rather than taking a whole brain voxel-wise
approach (as with a GLM). The advantage of this approach is that it is
easier to apply more sophisticated methods; the parameter estimates
from a first level analysis can be extracted and used more generally in
higher-level models. The problem of correcting for multiple compar-
isons is greatly diminished because the number of regions is controlled,
and the statistical power of the experiment is greater. The disadvantage
of the approach is that one loses the ability to conduct exploratory
analysis of the whole brain, producing an incomplete picture of how
brain function is changing over time. Using parameter estimates de-
rived from a single contrast of interest in a higher-level model might fail
to fully account for correlated random effects. To address these chal-
lenges with ROI-based approaches, Ordaz et al. (2013a,b) expanded
their ROI analysis to conduct a voxel-wise analysis in R as verification
of their findings. The field would benefit from a tool that would allow
these types of voxel-wise analyses using more advanced growth mod-
eling to be applied more easily to fMRI data. Before describing such a
tool, we first review the functionality for longitudinal analyses avail-
able in each of the three commonly used fMRI analysis software
packages.
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4.1. FSL

FSL is a library of neuroimaging analysis tools, written primarily in
C/C+ + with Tcl graphical front-ends. FSL implements a univariate
voxel-wise approach to fMRI analysis, taking a multi-level modeling
approach for within-subject data that can estimate random intercepts
(Beckmann et al., 2003). Specifically, FSL utilizes a three-stage mod-
eling approach. First, person-level statistics are calculated (i.e., task
effects) for each run of data acquired. Second, these person-level esti-
mates are combined to estimate a mean effect for each partici-
pant—these estimates are allowed to vary across participants in a study.
Third, these person-level estimates are used in group-level analysis of
various kinds (e.g., t-tests comparing two groups on a contrast of in-
terest, or linear regression to examine a continuous predictor of a
contrast of interest). FLAME (FMRIB's Local Analysis of Mixed Effects)
(Woolrich et al., 2004) is used to specify GMLM models in FSL that can
estimate a random intercept for each individual based on multiple runs
of data. This has advantages in modeling group/person-level differ-
ences (equivalent to specifying random intercepts in multilevel models)
because it does not need the same number of time points for all subjects
or require the same number of subjects across groups. The estimation is
achieved using a Bayesian method. One key limitation is that FLAME
does not model within-individual variance across multiple distinct
measurement occasions (i.e., random slopes). This is because there are
usually not many sessions per subject, which can cause convergence
problems associated with estimating session-to-session variance.
Moreover, as described above, models are conducted using repeated
measures ANOVA, meaning that explanatory variables in person-level
models are necessarily categorical rather than continuous (see above
limitations).

4.2. SPM

The Statistical Parametric Mapping (SPM) software suite is a
toolbox based in MATLAB (MathWorks, Inc.). Like most neuroimaging
software, SPM is massively univariate, treating each voxel in-
dependently, with support for cluster-level significance testing based on
random field theory. Underlying statistical models in SPM are based on
the GLM with additional support for limited Bayesian inference using
the same sets of models that can be specified in the GLM component.
Factorial designs can be specified at both the individual level and group
level, and this procedure allows estimation of t-tests, linear models, and
ANCOVA when certain assumptions are met. However, as described
above, longitudinal data often have many properties that violate as-
sumptions of, or that are burdensome to encode in these models. There
is support for estimating simple repeated measures ANOVA using a
within-subjects factor, either by using the so called “Flexible Factorial”
design or doing much of the estimation at the individual level (Henson
and Penny, 2003). SPM tools are thus not well-suited for unbiased es-
timation for longitudinal studies with missing data. Relating changes in
neural data over time with changes in other time-varying covariates is
not possible. GLM Flex Fast2 (Schultz, 2017) does provide some ex-
tended capabilities to SPM’s implementation of the GLM, but it still
does not address several of the situations indicated above.

Table 2
Capabilities of commonly used neuroimaging statistical software.
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4.3. AFNI

The Analysis of Functional Neurolmages (AFNI) is suite of programs
written in multiple languages—mainly C, but also Python (van Rossum,
2001) and R (R Core Team, 2014)—for the analysis of fMRI data. Like
SPM, AFNI relies on a two stage analysis approach in which individual
level statistics are calculated and used as the raw data for the group-
level analysis. Similar to SPM and FSL, AFNI is massively univariate,
and includes support for non-parametric estimation of cluster-wise
significance values, although the estimates of spatial smoothness are
parametric. In addition to providing similar functionality to SPM (and
FSL, though without accounting for first-level variance), AFNI has re-
cently added a component, 3dLME, that implements a maximum-like-
lihood, multi-level (i.e., linear mixed effects, or hierarchical linear)
modeling approach to group level data. This component was written to
address the above limitations of the GLM approach (Chen et al., 2013).
3dLME is built around the nlme and the Ime4 mixed effects modeling
packages (Bates et al., 2015; Pinheiro et al., 2017) in R (R Core Team,
2014), and so can encode and analyze nearly any single model allow-
able in either package, even ones that include auto-correlated error
structures. Missing data is handled by the underlying R packages.
However, variance-covariance structures cannot be customized. The
output of this program are 3D images of voxel-wise F-statistics for all
model terms (main and interaction effects), t-tests for quantitative
(continuous) variables, as well custom general linear t and F tests. It is
also possible to generate per-voxel intra-class correlation estimates.
3dLME is a fixed framework in which the BOLD signal in a single voxel
is always the dependent variable, and the return values are fixed in the
way described above, so it does not allow the flexibility one would have
by using R directly. Despite these limitations, 3dLME remains the most
sophisticated tool among the regularly used neuroimaging analysis
suites available for analyzing longitudinal fMRI data.

5. A new approach for longitudinal fMRI analysis

As shown in Table 2, existing packages for fMRI analysis fall well
short of being able to fit the spectrum of models that are of interest in
developmental research. The most flexible major software package is
AFNI, which passes through features of mixed effects models as im-
plemented by R in the packages nlme and lme4. However, other major
packages do not have this flexibility and have serious limitations when
applied to longitudinal fMRI data. The most obvious limitation with
current fMRI software is an inability to model the types of changes that
longitudinal studies are designed to characterize. In particular, it is
currently impossible to answer questions that require modeling change
as a latent variable. This is required for questions that involve using
changes in brain structure, function, and connectivity as a predictor of
other factors (e.g., behavior, health), or to examine brain changes over
time as mediators or moderators of other associations. Importantly,
because of the complexity of aspects of fMRI processing that are un-
related to statistical modeling, and the multi-level analysis approach
adopted by commonly used packages, it is difficult to bridge modeling
methods used in developmental science with fMRI analysis. Below, we
present a novel approach that would allow the most current statistical

fMRI Analysis Missing Data  Voxel-wise Between-group Rank- Between Within Predictors of Correlations Latent Change as a
Software model mean order individual individual within-individual between growth Groups predictor
comparison differences change change change change over time processes

FSL X X X

SPM X X X

AFNI bq X X

AFNI X X X X X X X X
(3dNLME)
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models of developmental change to be applied to fMRI data.

Recent developments in scientific computing can be exploited to
address the lack of flexibility of current fMRI modeling. We are cur-
rently developing a package called Neuropointillist that allows a
model to be run on each voxel, for each participant, at each time point
of the study using any type of model that can be specified in R, in-
cluding GMLM and SEM-based models. Neuropointillist assembles
longitudinal pre-processed and spatially normalized fMRI data into a
long-form data set (i.e., where each row represents data from a parti-
cular voxel from a particular subject at a particular time) suitable for
analysis in R (Madhyastha et al., in prep). The specified model is ap-
plied to every voxel, for every subject in the dataset, and each mea-
surement occasion. The program then assembles the outputs into sta-
tistical parameter maps. Because of the lack of consensus in best
practices for pre-processing neuroimaging data, we have separated the
tools used for statistical modeling from those involved in preprocessing,
following a growing trend for interchangeability within neuroimaging
workflows (Askren et al., 2016; Gorgolewski et al., 2011). The only
additional step that would normally be performed by fMRI software is
pre-whitening, an approach to correcting for autocorrelation of the
BOLD signal; autocorrelation needs to be handled by the model.

However, one can also use the parameter estimates obtained from
first-level analyses with standard fMRI packages. This affords complete
flexibility to evaluate any statistical model of interest for voxel-wise
analysis, particularly those that are more commonly used in psychology
and behavioral sciences (i.e., latent growth curve models that estimate
growth as a latent factor).

Neuropointillist was designed to address the computing challenges
inherent in estimating complex models that are slow to converge in
fMRI data, where these models must be estimated thousands of times
(i.e., at every voxel in the brain). This is particularly important for
estimating more complex longitudinal models. In rapidly developing
fields such as cognitive neuroscience, where it is important to quickly
develop, evaluate, and reject or refine new models, ease of program-
ming is key. Scripted languages such as R or Python are easier to pro-
gram and more widely used in the behavioral sciences than compiled
languages like C or C+ +, and are therefore more likely to be used. R is
of particular interest because it is the lingua franca of statisticians—-
most of the newest statistical techniques are first implemented in R
before they reach other statistical packages. This decreases the barriers
to collaboration with developmental researchers and statisticians who
may be familiar with longitudinal modeling, but not with the syntax
and restrictions of model specification in fMRI analysis packages.

A caveat, however, is that scripted languages, such as R, are much
slower than compiled code. This means that computation time in R on
standard desktop computers may be intractable for certain voxel-wise
models. An important observation is that analyses applied to tens of
thousands of voxels in the brain can be split so that each voxel runs
independently of the others. Neuropointillist exploits this parallelism.
Specifically, it splits all voxels in the brain and allows them each to be
sent to different processing units to be run in parallel, reassembling
them upon completion. Although most universities facilitate access to
parallel computing clusters, parallel computing resources are now
generally accessible for an hourly fee through cloud service providers
such as Amazon, Google and Microsoft. Use of parallelism can drama-
tically minimize the amount of time needed to run a complex voxel-
wise model. Reducing execution time in this way makes it feasible to
perform the iterative model testing that is required when estimating
latent growth models or other more complex longitudinal models in a
voxel-wise analysis. Cost optimization strategies (e.g., spot pricing
available through Amazon) bring the cost to the user below that of
purchasing and maintaining dedicated hardware. By separating paral-
lelism and cloud services development from statistical modeling, we
hope to make it easier to conduct voxel-wise exploratory modeling
without advanced computational expertise.

To illustrate the flexibility of Neuropointillist, we provide three
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modeling examples using a longitudinal developmental data set with
three time points. These examples are not intended to test or evaluate
actual developmental processes or effects, and we refrain from inter-
pretation of specific contrasts. These examples are provided simply to
illustrate the functionality of Neuropointillist and demonstrate that
these types of analyses are possible on an actual longitudinal task-based
fMRI data set. The first example uses fit statistics to evaluate where in
the brain two task-related predictors interacted in a model that in-
cluded random effects for both intercept and time (i.e., slope). The
second example determines the best functional form for time by com-
paring model fit statistics for linear fixed, linear random, and fixed
quadratic and logarithmic forms of growth. Although these types of
model comparisons are common in developmental research, the only
neuroimaging package that currently outputs model fit statistics is AFNI
3dLME—a feature that was recently added as of this writing. However,
fit statistics are limited to those that are passed through from the un-
derlying R packages to the AFNI output. In contrast, numerous types of
model fit statistics can easily be estimated in R in a general framework.
The third example uses a parallel growth model to explore the corre-
lation between of linear growth in pubertal development with linear
growth in neural activation (i.e., BOLD signal) over time. This type of
SEM analysis is currently not possible with current neuroimaging
software, but could be used to address numerous questions of interest,
particularly regarding brain-behavior associations over time.

The longitudinal dataset comprises adolescents who were scanned
at 3 waves (N1 = 78, N2 = 49, N3 = 35) at ages 10-16 while making
evaluations of target ‘self’ and ‘other’ in both social and academic do-
mains (see Pfeifer et al. (2013) and Pfeifer et al. (2007) for a description
of the task and subsets of the data; the data set used in these demon-
strations of Neuropointillist is larger than previously described). The
Pubertal Development Scale (PDS; Petersen et al., 1988) was adminis-
tered at each measurement occasion. We estimated and compared
mixed effects models in a voxel-wise analysis using t-statistics from a
first level analysis where each voxel represented the degree of asso-
ciation between the BOLD response time course and the model-ex-
pected time course for each cell of this 2 X 2 experiment (target [self
vs. other] and domain [social vs. academic]). All coordinates are re-
ported in MNI space. R code for the analyses described below are in
Supplemental Materials.

For greater details about the Neuropointillist package and its use,
please see http://github.com/IBIC/neuropointillist, the software re-
pository for the code. Documentation on the use of the software, and a
worked tutorial, is included in this repository and is hosted on http://
ibic.github.io/neuropointillist. Currently the package parallelizes ex-
ecution in shared memory and Son of Grid Engine (SGE) cluster en-
vironments. To use Amazon Web Services (AWS) one creates a tem-
porary cluster using an AWS account to run neuropointillist as on a
local cluster. This means that data needs to be copied to the cluster and
back. We are working on improving the integration of AWS with neu-
ropointillist to make remote execution easier and more transparent.

5.1. Example 1: identifying where an interaction exists using model fit
statistics

The base model included fixed effects of age, time, domain and
target and a random intercept and slope, while the extended model
included an additional interaction between target and domain. The
relative fit of the base and extended models were then compared using
the AIC. In all examples, where there was an error in model fit or in
convergence, a missing data code was returned to exclude the voxel
from analysis.

Fig. 2 shows areas of the brain where there is evidence based on the
AIC for the extended model, supporting an interaction between target
and domain. Evidence for an interaction is strong in areas that we ex-
pect to be activated by the task (e.g., medial prefrontal cortex). This
simple example demonstrates the importance of model testing for
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Difference in AIC

identifying the best-fitting model. Inferences from a model that did not
properly specify the presence of an interaction between task conditions
might be incorrect in areas where the extended model was superior.

5.2. Example 2: determining the best functional form for time

Our second example determines the best functional form for time —
a standard step in model fitting for longitudinal data analysis. Here, we
include fixed effects of target and domain, and compare linear fixed,
linear random, quadratic fixed, and logarithmic fixed effects of time.
Linear fixed models were nested within linear random and quadratic
fixed effects models and so could be statistically compared using a log-
likelihood ratio test; all models were compared using the AIC and BIC.
After running all models, we identified masks for the best models (as
indicated by all available fit statistics). With these masks, we identified
clusters of voxels for each model that were significantly associated with
time, cluster-corrected for multiple comparisons at p < 0.05,
alpha = 0.05.

We found that inclusion of a random effect of time improved model
fit over nearly all voxels in the brain as compared to a fixed effect of
time. Similarly, we found that the logarithmic model was best only
where the effect of time was non-significant or within white matter (not
shown). Fig. 3 shows areas (in blue) where the quadratic model for time
was best. It is important to note that estimating functional forms that
are non-linear would ideally be done in data with more than three time
points, particularly as random effects can only be tested for a linear
slope with three time points (King et al., this issue).

5.3. Example 3: correlating growth curves

Our third example used the SEM package lavaan (Rosseel, 2012) to
identify areas in the brain where the slope of pubertal development
(measured by the PDS) was correlated with the slope of mean BOLD
signal (averaged across all four task conditions). Although the analysis
approach is of interest for many questions in developmental cognitive
neuroscience (i.e., questions of how change in brain function correlates
with change in behavior or other characteristics), in this example, the
signal we are modeling is of no particular interest (i.e., we averaged
BOLD signal across all conditions rather than using a particular con-
trast). Fig. 4A shows areas in the brain where the estimated correlation
of the slopes is significantly positive or negative, uncorrected for mul-
tiple comparisons at p < 0.05.
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Fig. 2. Neuropointillist results: Evaluating where
there is a significant interaction. (For interpretation
of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

We extracted the parameter estimates from a single voxel (— 46, 24,
20) in the inferior frontal gyrus, with negative linear growth, to illus-
trate how to interpret correlated growth. Fig. 4B shows individual
change in activation by age. Although the mean BOLD signal in this
voxel is not statistically different from zero, there is substantial in-
dividual variability in the slope of the growth curves. This growth is
systematically related to pubertal development. Fig. 4C shows average
growth curves in activation at this voxel for a hypothetical individual
who had low initial levels of the PDS and exhibited low growth over
time (1 SD below the mean), compared to an individual who exhibited
both average initial levels on the PDS and exhibited average growth in
the PDS over time, and an individual who showed high initial levels of
the PDS and grew at a higher rate over time (1 SD above the mean).
Both level and slope of PDS must be incorporated to show how they are
associated with trajectories of BOLD signal, because both level and
slope define the trajectory in a parallel process model. At low PDS slope
and intercept, pubertal development is unfolding relatively slowly, and
the decrease in BOLD signal is shallow. At a high PDS slope and in-
tercept, puberty is advancing more rapidly, and there is a much steeper
decrease in BOLD signal.

6. Summary of examples

As demonstrated in these examples, Neuropointillist is a paralle-
lizable framework that permits the use of any model to be applied to
voxel-wise fMRI data. The flexibility of the framework we propose is
extremely general, allowing any model callable from R to be run on a
voxel. This helps to address some of the limitations of existing neu-
roimaging software, such as missing data. There are many strategies for
dealing with missing data, such as imputation or using statistical
models to allow for missing data, that are easy to implement in R and
could easily be applied within Neuropointillist. Another problem in-
herent in longitudinal studies is practice effects. Flexibility in modeling
growth curves using SEM models for change is helpful in modeling
practice effects; for example, developmental effects can be estimated
separately from practice effects (Ferrer et al., 2005).

The R package OpenMX, which supports mixture growth modeling,
may be used instead of lavaan. Mplus (Muthén and Muthén, 1998), a
powerful commercial latent variable modeling program, can also be
invoked from R using the MplusAutomation package. These SEM op-
tions allow the use of a wide range of SEM-based longitudinal growth
and latent variable models, none of which are currently available to the

Fig. 3. Neuropointillist results: Determining the best functional form
for time. Blue regions are areas where there is a quadratic effect of
time. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)
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Fig. 4. Neuropointillist results: Correlating growth curves. A. Regions where there is evidence for positive or negative correlation between slopes of pubertal development and BOLD
signal. B. Individual growth curves for BOLD signal. C. Illustration of the relationship between BOLD signal and mean centered age for different initial levels and growth of PDS. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

neuroimaging community.

Although this framework makes it easier to execute and compare
voxel-wise models in R, there are still many challenges that will need to
be addressed. Perhaps the biggest challenge is that model building is
often an iterative process. Practically, this is challenging to do with tens
of thousands of voxels. We will need to be able to program iterative
strategies for testing and modifying models at each voxel. Then, we will
need tools for visualizing and interpreting complex results. As our ex-
amples above show, it is not clear whether the same model will be
accurate in all parts of the brain. However, there is currently no con-
sensus on how to best compare methods in the spatially extended
context of the brain. Although our software exploits parallelism to
improve performance, there are still models that will be intractable and
improvements that will need to be made to increase computational
speed. This will require programming optimization and/or the devel-
opment of new, more efficient statistical approaches.

fMRI pre-processing steps can have an impact on subsequent sta-
tistics. For example, larger spatial smoothing kernels affect the size of a
cluster that is statistically significant. Moving away from program de-
faults means that scientists need to be aware of statistical assumptions
throughout the analysis pipeline. Finally, these approaches are limited
only to voxel-based analyses. Multivariate approaches are clearly im-
portant to understanding both task activation and longitudinal analysis
and will ultimately need to be supported within this framework. This is
functionality we hope to incorporate in the future.
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7. Discussion

There is a wide gap between the modeling capabilities of current
neuroimaging software and the models that are necessary to answer
developmental questions. Most neuroimaging software is based on the
GLM model, which supports inferences about either cross-sectional
differences in the mean of an outcome over time, or between-individual
change. However, GLM-based models are not appropriate for estimating
within-individual changes, or between-individual differences in change
over time. These types of questions require multilevel growth models,
which are currently only implemented in AFNI 3dnlme. Many types of
questions about growth cannot be answered in the multilevel growth
model framework, however. For example, questions about how growth
predicts other processes, whether there are discrete sub-groups that
display different types of change over time, and whether neural changes
are moderators or mediators of other processes require the use of SEM-
based models and are currently impossible to answer in neuroimaging
software in a whole-brain analysis framework.

We propose a flexible framework called Neuropointillist, which al-
lows one to use R to describe a model that can be applied to pre-pro-
cessed fMRI data. Voxel-wise models are executed in parallel and re-
assembled to create a spatial statistical map. Rather than wrapping
specific functions, we permit any code to be executed on each voxel.
This approach has the advantage of allowing experimentation with any
growth model, including SEM-based models, that can be described in R
(or in software that can be called from R). We demonstrate this ap-
proach to compare fit statistics for various model specifications in a
longitudinal fMRI data set.
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The power to model longitudinal fMRI data more flexibly introduces
new challenges. First, there is no guarantee that the same model will
describe change in all areas of the brain, and there are currently no
accepted methods for selecting a best-fitting model or summarizing this
type of complexity. As it is generally not of interest to make inferences
at the level of voxels but at the level of meaningful clusters of voxels, it
is likely that principles drawn from cluster-level inference could be
applied to issues of model fit. But these methods will require ongoing
refinement and debate. Second, building and testing SEM-based growth
models is often an iterative procedure that will need to be automated to
conduct such modeling at a voxel-wise scale in longitudinal fMRI data.
Third, this paper has focused on voxel-wise analyses only, despite the
fact that there is much interest in development of connections between
regions in the brain, both at task and at rest. Multivariate longitudinal
analysis of the development of networks remains relatively unexplored.
Finally, no statistical method can compensate for the lack of a good
theory to help understand how to interpret complex patterns of growth
across the brain.

These challenges are welcome, because the ability to apply state-of-
the-art longitudinal models is necessary to advance our understanding
of how the brain changes across development, allowing us to study
individual change in brain structure and function in relation to the
environment and experience and in relation to changes in behavior.
This understanding is key to developmental cognitive neuroscience and
presents the field with innumerable challenges to tackle in the years to
come as we develop more sophisticated approaches for modeling dy-
namic changes in the brain across time.
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